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ABSTRACT: 
This study presents a novel approach to managing the air-fuel ratio in internal combustion engines (ICEs) by 
integrating an artificial neural network (ANN) with sliding mode control (SMC) to enhance system robustness 
against sensor failures. Accurate air-fuel ratio control is crucial for optimizing engine performance, fuel efficiency, 
and emissions. However, sensor malfunctions can significantly disrupt the control process, leading to poor engine 
operation and increased emissions. This research proposes a hybrid control strategy that employs ANN for precise 
estimation of the optimal air-fuel ratio and SMC to ensure stability and robustness in the presence of sensor faults. 
The ANN is trained on a comprehensive dataset representing various operating conditions of the engine, enabling it 
to adaptively predict the required air-fuel ratio. Meanwhile, the SMC design effectively mitigates the impact of 
sensor failures by maintaining control system performance through variable gains and robust feedback 
mechanisms. Simulation results demonstrate that the proposed method significantly improves air-fuel ratio control 
accuracy and system resilience compared to traditional control strategies. This research contributes to the 
advancement of intelligent control systems for internal combustion engines, paving the way for enhanced 
performance and reduced environmental impact in automotive applications. 
 
 
I. Introduction 
The management of air-fuel ratio in internal combustion engines (ICEs) is critical for 
optimizing engine performance, ensuring fuel efficiency, and minimizing harmful 
emissions. The air-fuel ratio, defined as the ratio of air mass to fuel mass in the 
combustion process, directly influences the combustion efficiency and the overall 
operation of the engine. An optimal air-fuel mixture is essential for achieving 
complete combustion, reducing exhaust emissions, and enhancing power output. As 
automotive technology continues to evolve, the need for advanced control strategies 
that can adapt to varying operational conditions and potential system faults has 
become increasingly important. 
 
Traditional control methods for air-fuel ratio management often rely on fixed 
algorithms or simplistic control strategies that may not effectively accommodate the 
dynamic nature of engine operation or respond adequately to sensor malfunctions. 
Sensor failures can lead to significant deviations in the measured air-fuel ratio, 
resulting in poor engine performance, increased fuel consumption, and higher 
emissions. Consequently, developing robust control mechanisms capable of 
maintaining optimal air-fuel ratio management despite sensor uncertainties is a 
critical challenge in modern engine control systems. 

Keywords 
Artificial 
neural 
network, 
sliding mode 
control, air-
fuel ratio 
control, 
Lyapunov 
stability, and 
fault-tolerant 
control. 

 
 
 

http://www.jocmr.com/
http://www.jocmr.com/
http://www.jocmr.com/
http://www.jocmr.com/
http://www.jocmr.com/
http://www.jocmr.com/


                   Journal of Complementary Medicine Research ¦ Volume 11 ¦ Issue 5 ¦ 2020 

BALABHADRA NAGARAJU et al: Sensor Fault Tolerant Air-Fuel Ratio Control in Internal Combustion Engines via Artificial Neural 
Networks and Sliding Mode Control 

 

       

 
 
 
This study proposes an innovative approach that 
integrates artificial neural networks (ANNs) with 
sliding mode control (SMC) to enhance air-fuel ratio 
management in internal combustion engines while 
ensuring fault tolerance against sensor failures. The 
ANN serves as a predictive model that learns and 
adapts to various engine operating conditions, 
providing real-time estimates of the optimal air-fuel 
ratio. In parallel, the SMC framework offers 
robustness and stability, effectively counteracting 
the effects of sensor faults through dynamic 
feedback mechanisms.  

 
By employing this hybrid control strategy, this 
research aims to improve the accuracy of air-fuel 
ratio management, enhance engine performance, 
and reduce environmental impact. The findings of 
this study are expected to contribute significantly to 
the development of intelligent control systems in the 
automotive industry, providing a pathway toward 
more efficient and reliable internal combustion 
engines.

 
and properties, FTCS is divided into two major cate- 
gories: active and passive. Some symbols and 
abbrevia- tions related to HFTCS are listed in Tables 
1 and 2, respectively. 
In active fault-tolerant system (AFTCS), the fault 
detection and isolation (FDI) unit is designed to 
detect the fault in the online mode and it isolates 
faulty val- ues.4–6 The FDI unit compares the values 
of the actual sensors with the estimated values 
being generated from the observer for a residual 
generation. The fault in the component is declared 
when the residual value exceeds its predefined 
limiting value. The controller is then reconfigured to 
adapt according to the current faulty conditions 
after fault detection and isolation, with little output 
deterioration.7,8 Unlike AFTCS, passive fault- 
tolerant system (PFTCS) may not need  a  dedicated 
FDI unit, and any fault in the design stage of the 
con- trol system is considered beforehand in the 
offline mode.9–11 PFTCS is, therefore, very swift 
than AFTCS due to lesser computational cost, but it 
has the draw- back to deal with the faults only that 

were considered during the construction of the 
controller.12,13 A combi- nation of all these 
approaches is also built by integrat- ing both types, 
namely hybrid fault-tolerant control system (HFTCS). 
In protective and safety applications, the hybrid 
system can rapidly respond  to  faults with the PFTCS 
property and later optimize itself with the AFTCS 
property.14–16 In Amin,14 the HFTCS has been 
proposed with Kalman Filters in the active part and a 
high-gain PI controller in the passive part. This algo- 
rithm was limited to the linear range of the highly 
non- linear sensors of the AFR control system. In Su 
et al.,15 the HFTCS was proposed for the sensors of 
the distilla- tion column without using any intelligent 
control or data-driven technique. In Wang et al.,16  
the  HFTCS was proposed for the uncertain 
networked control sys- tems under a discrete event-
triggered communication scheme that was not 
applied to the process plant. 
A comprehensive study of the FTCS has been men- 
tioned for the nonlinear system in Li17 for various 
fault 
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scenarios. In Yang et al.,18 the non-linear hybrid 
FTCS design was established for feature extraction, 
and the actuator fault adjustment control was 
applied. The arti- ficial neural networks (ANN) 
technique  was  applied for the switched-type 
nonlinear systems in Tang et al..19 For a single-tank 
system with system faults and process disturbances, 
a fuzzy logic-based passive fault-tolerant control 
method was proposed in Patel and Shah.20 In 
Murtaza et al.,21 a super-twisting control-based 
unified FDI and FTC system for the air path of diesel  
engines is reported. Kalman Filters (KFs) were also 
used in the FDI architecture of gas turbines for faulty 
sensor esti- mation22,23 consisting of both hardware 
and analytical redundancies. 

 
Artificial neural networks 
The artificial neural network (ANN) includes the con- 
cept of artificial intelligence, whose aim is to allow 
the systems to learn from experience. ANN works on 
the same logic as a human brain. It is a smart and 
modern approach to data-driven problems.24 This 
non-linear technique is used in real-time problems 
like the model- ing of the engine because the engine 
is a highly non- linear system and ANN provides an 
optimal solution for such highly nonlinear 
problems.25–27 The architec- ture of the ANN is 
shown in Figure 1. 

 

 
ANN performs a data-parallel function, therefore, 
sequential simulations are easier than standard 
systems. The ANN works with both forward and 
backpropaga- tion. Its multi-layer perceptron model 
is known as a backpropagation neural network 

(BPNN).28–30 The input is in the form of samples and 
is treated with dif- ferent multiple hidden layers 
before the required output is mapped through this 
input. In Gao et al.,30 FTC architecture was 
proposed with an adaptive neural net- work for 
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Multi-Input Multi-Output (MIMO) systems. In Wang et 
al.,31 the ANN is utilized with a backpropa- gation 
strategy for the fault-tolerant control system. An 
adaptive neural network for the unmolded dynamic 
solution is proposed in Yin et al.32 The dataset is 
mapped to real numbers, that is, (x, y) where x 
repre- sents the selected feature and y translates 
the health state to this feature. ANN is described in 
terms of mathematical form is, 

 
where wl represents the weight matrix inputs, bl 
shows the bias vector for layers l, and al is activation 
vector with the activation elements al. 
 
Sliding mode control 
Robust control is a control system architecture tech- 
nique that can allow systems to manage faults as 
long 

 
as the faults stay within the predefined limits.33,34 
Robust control systems are static rather than 
dynamic and do not adjust to their conditions. For 
example, a high-gain feedback system is a robust 
control system due to its high gain, and changes in 
the other para- meters prove negligible due to its 
robustness. Sliding mode control (SMC) is derived 
from a variable struc- ture control system that 
mostly incorporates various control structure 
features and performs better than existing classical 
control structures.35,36 There are two phases in the 
SMC design as represented in Figure 2. 
SMC triggers chattering in the actuator because of 
the rapid switching, therefore, a higher-order SMC 
named as super twisting algorithm is used to reduce 
the chattering problem.37 It is a non-linear 
technique with exceptional robustness properties. In 
practical terms, SMC facilitates non-linear processes 
that are subject to large model uncertainties. SMC 
will form the passive part in our proposed HFTCS to 
react instantly to faults.38 

A customizable surface needs to be built in the first 
phase. The second phase should be planned to 
ensure that the system converges to the sliding 
surface for a minimum time. The phenomenon in 
which the motion takes place on a sliding surface is 
known as a sliding mode.38 
 
AFR control of IC engines 
 The internal combustion engine is a type of heat 
enginein which the combustion of air and fuel takes 
place inside the cylinder and is used as the direct 
motive force. These engines transform the chemical 
energy of a fuel into thermal energy and use this 
energy to produce mechanical work. Its two main 
types are known as Spark Ignition (SI) and 
Compression Ignition (CI).  In SI engines, the 
combustion takes place with the help of spark plugs, 
while in CI engines, the heat of compres- sion is used 
for combustion.39 
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The term air-fuel ratio (AFR) is defined as a mixture 
ratio of proper fuel and air in the combustion 
chamber and it is widely used to enhance the 
reliability and effi- ciency of the IC engine. Its 
mathematical  expression can be written as: 

 
where mair represents the mass of the air and mfuel 
rep- resents the mass of the fuel. The equation of 
AFR for gasoline mixture is, 

 
According to this equation, AFR is said to be the stoi- 
chiometric ratio with a value of 14.6:1 for gasoline 
fuel and is desirable for optimum combustion, fuel 
energy savings, and reduced emissions levels. If the 
mixture has AFR greater than 14.6:1, it is known as a 
lean mix- ture with greater air than fuel. A mixture 
with lesser than 14.6:1 is termed a rich mixture with 
greater fuel than oxygen. However, both of them are 
considered to be harmful to the engine’s 
performance and life as it decreases their efficiency. 
The value of AFR is different for various categories 
of fuels. For example, methanol values are 6.47:1, 
9:1 for ethanol, and 34.3:1 for hydrogen.40 
The air-fuel mixing system of an SI IC engine is 
shown in Figure 3. Atmospheric air is filtered first 
and then passes through a throttle  actuator.  To  
change AFR more accurately by the AFR controller, 
the fuel actuator has been designed to adjust the 
fuel supply. The fuel is then first purified and 
transferred to the fuel actuator for flow control via 
the fuel pump. Air and fuel mixture is then made 
and provided for combustion to the engine cylinders. 
In the AFR control system of the IC engine, four 
sensors play an important role. 

Throttle sensor: Often known as an air sensor. It 
provides the air throttle position signal to the engine 
control unit (ECU). 
Manifold absolute pressure (MAP) sensor: It is also 
called a pressure sensor. It provides the suction 
manifold air pressure value to the ECU. 
Speed sensor: It measures the speed of the engine 
crankshaft and provides to the ECU for 
controllercalculations. 
Exhaust gas oxygen (EGO) sensor: It’s often referred 
to as a gas sensor. The concentration of oxygen in 
the exhaust of the IC engine is measured by an EGO 
sensor and provided to the ECU. 
In the paper, our contribution is to implement the 
novel HFTCS for the reliable operation of the IC 
engine to maintain the AFR in faulty conditions and 
prevent engine shutdown. In the proposed system, 
SMC will form the passive part to react instantly to 
faults while ANN will optimize post-fault 
performance with active compensation. Lyapunov 
stability analysis was performed to make sure that 
the system remains stable in both normal and faulty 
conditions. The fault tolerance is checked with noisy 
measurements of sen- sors to examine the 
robustness of the proposed control- ler. The 
simulation results in the Matlab/Simulink 
environment show that the designed controller is 
robust to faults in normal and noisy measurements of 
the sen- sors and reliable. Furthermore, the 
comparison with the existing works is carried out to 
demonstrate super- ior performance. 
The structure of paper is organized as. Section 
‘‘Research methodology’’ discusses the research 
metho- dology. Section ‘‘Results and discussions’’ 
presents the results and discussions. Section 
‘‘Comparison with the existing works’’ elaborates on 
the comparison. Finally, the last section provides the 
conclusion of the paper. 

 
 
Research methodology 
The proposed HFTCS is implemented on the 
availableIC engine model in Simulink. Mathworks 
explains preliminaryknowledge and model 
working.41,42 In thismodel, the AFR system of the 
gasoline engine is builtbased on the findings of 
Crossley and Cook43 and wasfully validated against 
dynamometer test data.42 Themathematical 
equations used for the model constructionare in 
accordance with the mean value enginemodel 
(MVEM).44 Moreover, it gives accurate AFR asfound 
in practical gasoline engines.40 HFTCS is a 
combinationof AFTCS as well as PFTCS, as 
previouslymentioned. AFTCS is designed using an 

ANN-basedobserver to build the FDI unit. In PFTCS, 
the AFRcontroller is designed using a robust SMC that 
allowssystems to manage faults without many 
computations.The engine speed for this study is set 
at 300 r/min dueto the design speed of the available 
MATLAB enginemodel. Therefore, a value of 300 is 
transmitted to thecontroller by the FDI unit in the 
case of a fault in thespeed sensor. We utilized 
constant speed in this studysince the engines in the 
process plant run at a constantspeed most of the 
time, and the designed FDI providesthe controller 
with 300 r/min of speed if the speed sensorfails. 
Because the paper is focused on designing anANN-
based AFTCS system, load changes and theirimpact 
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on speed are not examined. The data for theMAP 
sensor and the throttle sensor at 300 r/min isderived 
using the available Matlab model lookup tables(LTs). 
To generate nonlinear interactions between theMAP 
sensor and the throttle sensor, the ANNapproach is 
applied. For the generation of the estimatedvalue of 
malfunctioning sensors, the FDI unituses these 
nonlinear relationships. If the throttle andMAP 
sensors are faulty, the FDI unit generates an 
estimatedvalue based on ANN observations and 
suppliesto the ECU. The important parameters used 
in themodel are mentioned in Table 3:First of all, 
the engine can work in its normal conditionsif there 
is no fault. On the other hand, if a singlesensor fault 
will happen, SMC will form the passivepart to react 
instantly to faults while ANN will optimizepost-fault 
performance with active compensation.Noise is 
introduced into the sensors, and their effect onthe 
output is seen in normal as well as in 
faultyconditions to check the robustness of the 
proposedHFTCS. Zero seconds have been assumed 
when thesensors are switched. However, a delay 
possibly occurs 
in the switching actions. The limitations of the 
workare that only the full fault for sensors is carried 
outwithout taking partial faults which will be 
covered infuture works.Engine AFR system 
modelingThe modeling mentioned in this section is 
generic forcomplete theoretical analysis and 
adopted from wellknownliterature.40,45 The control 
of the air-fuel ratio isdivided into different 
dynamics: air dynamics, sensormodel, and fuel 
dynamics.Air dynamics. The dynamic manifold intake 
is defined bythe mass conservation theory and ideal 
air gas hypothesisin the following terms: 

 
Where, Pin shows manifold pressure, vin 
demonstrates the input volume, and Tin represents 
the input tempera- ture; the gas constant is R; fth 
illustrates the throttle opening position. The mass 
flow into cylinders is repre- 
sented  as  m_ Cyt;  the  mass  flow  through  the  
valve  is demonstrated as m_ th; and engine speed is 
Ne. The tem- perature is assumed to be constant. 
Thus, equation (4) becomes: 

 
The mass flow through the valve is: 

 
Cd the coefficient of discharge. The variable Pid 
illustrates the pressure due to overhead loading and 

theload ratio Pr is the overload pressure . 

Thefeature Ses fð thÞ is the area of throttle 
opening. In animplementation, the product Cd Ses fð 
thÞ is consideredand also known as a single feature 
of throttle valveopening. It is demonstrated in 
several different models.The one chosen in this work 
is: 

 
where s1=0:00051, s2=2:4357, s3=0:052, 
ands4=0:0011 are constants. The g(Pr) shows the 
nonlinearrelationship as: 

 
Fuel dynamics. It is represented as: 

 
Where m_ fiðtÞ represents the fuel flow injection 
½kg=s , tfis the 
fuel vapor process, m_ fv is vapor fuel flow ½kg=s
,m€ff ðtÞ shows liquid mass fuel flow ½kg=s
, and m_ f ðtÞshows fuel flow in the cylinders ½kg=s
, , is a statevector.44 The second solution has been 
selected in ourcase: 

 
Where s5, s6, s7, s8 are constant parameters. 
Theinjector model is given by a linear relationship 
betweenthe mass fuel flows from the injectors.The 
air-fuel ratio is then obtained: 

 
00m_ cyl (t)00 is mass of cylinder, m_ f (t) is mass 
fuel flow intothe cylinder, ‘‘lcyl’’ is AFR in the 
cylinder. 
Sensor model. The lambda sensor model is 
representedas: 

 
where tl represents the time delay.The time delay t 
in terms of engine speed NeðtÞ isrepresented as: 

 
State-space representation. It is represented as: 
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Controller design 
The controller design is adopted from Sui and 
Hall46and given below: 

 
Where the input is u, the output is y, and the 
esiredoutput is yd, the state variables are x1 and x2, 
engineparameters are a and b, and finally Ne is 
engine speed.However, in this situation, we used 
predicted stateobservers, 

 
where x1 and x2 are the predicted values. 

 
Where the predicted output is y, the mean square 
erroris E. The estimated output is represented as, 

 
Equation (25) shows the mean square error 
function,so if we take the partial derivative of the 
previousequation, 

 
The gradient descent algorithm can change the 
statevariables, 

 
Where the estimated inputs are x1 and x2 are the 
predictedvalues. Adding equations (26) and (27) into 
the(28) and (29) we get, 

 

 
Add the value of h in the (30) and (31) equations, 

 
Lyapunov stability analysis is performed to check the 
system’sstability. Let’s assume the Lyapunov 
function is, 

 
Put the values of actual and desired outputs in 
equation(34), 

 
The error estimation is, 

 
So the Lyapunov function is, 

 
If we change ðkÞ cycle into ðk+1Þ the cycle then 
theequation is, 

 
Adding equations (32) and (33) into the (40) and (41) 
asfollows, 

 
Taking the difference between actual and predicted 
outputis, 
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So, the difference between both of them is, 

 
The last equation shows that the difference 
betweenboth cycles is negative definite and hence 
the Lyapunovstability proof is successfully achieved. 
The observerdesign with ANN was already discussed 
in Shahbazand Amin4 for the AFTCS part.SMC mostly 
incorporates various control structurefeatures and 
facilitates non-linear processes that aresubject to 
large model uncertainties. SMC will form thepassive 
part to react instantly to faults. Consider theMIMO 
system, 

 
Where u represents the input, x shows the state 
vector,and y is the output of the system. f ðxÞ and 
giðxÞ arevector fields, and hiðxÞ is a smooth 
function. Fiðx, Tþdemonstrates the uncertainty and 
it is further classifiedinto structured and 
unstructured parts: 

 
Where qsi is partial uncertainty and it is written as, 

 
Where Uo maintain the known terms, and Uo 
managethe uncertain terms and actuators’ faults. 
Assume thatG1ðxÞ exists and taking Uo as: 

 
Where Uo provides the desired output and eliminates 
alluncertainties and faults as well. Taking _Z as: 

 
The remaining system can be handled over: 

 
Unstructured uncertainties are assumed to be 
handledas: 

 
The controller structure ui is taken as: 
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Where u1 and u2 is control inputs and k1 and k2 is 
massflows. The output as set point regulation errors 
areselected as: 

 

 
Control law: 
The derivatives of the sliding variables after 
takinginto account structured and unstructured 
uncertaintiesare: 

 
Here, Yi represents the structured faults. These 
structuredfaults can be represented in terms of flow 
rates: 

 
Where Y1 and Y2 represents the over and under-
flowthrough exhaust gas recirculation and variable 
geometryturbo actuators respectively. It is assumed 
thatunstructured uncertainties are bounded: 

 
The control action is proposed in equation (67). 
Towork out uoi (control that can stabilize 
unaffectedplant), ignoring structured faults, and 
unstructuredfaults in equations (85) and (86): 
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Results and Discussions 
For fault detection, isolation, and reconfiguration ofcontrollers, FDI is implemented in the model withANN. The FDI 
unit continuously tracks the sensorvalues for any fault. If the sensor value exceeds thespecified limit, a fault is 
detected by threshold 
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Figure 5. Performance of AFTCS. 

 
comparison. Once the fault has been observed, an 
estimatedvalue of the observer model based on ANN 
issubstituted for the fault value and is supplied to 
theECU. The active part performs post-fault optimal 
performancefor the active compensation by 
providing theestimated value of the faulty sensor by 
ANN observerusing the other healthy sensors. Two 
ANNs have beenintroduced for throttle and MAP 
sensors. Since theengine is running at 300 r/min, this 
value has been suppliedto the controller if a fault 
occurs in the speed sensor.The AFTCS portion is 
simulated with sensor faultsone at a time and the 
effects on the AFR are observedat t=5 s due to the 
internal warm-up delay of theengine, as shown in 
Figure 5. Results from Figure 5show that the AFR is 
constantly degraded to 11.7 with 
every single sensor fault on the AFTCS portion 
alone.The passive part of the system consists of 
robustSMC. It provides a very quick response against 
fault,and after a very minor glitch in the output, the 
systemmaintains its steady state. Since the AFR 
decreases to11.7 in the AFTCS part, the SMC 
controller with a fuelactuator is designed to keep it 
to 14.6 in faultyconditions. 

In each of the four sensors, the faults are inserted 
att=0 s, and the results on the AFR are detected 
att=5 s due to internal warm-up times of 5 s in the 
originalmodel. Figure 6 shows the results achieved 
for eachsensor without noise in the sensors. The 
outputresponse of the proposed PFTCS for faults in 
each sensoris demonstrated in Figure 6. In the 
existing model,AFR is affected by faults in each 
sensor and decreases 
to 11.7, that is, degradation in the performance 
infaulty conditions. However, the proposed 
PFTCSmaintains AFR to 14.6 in normal as well as 
faultyconditions.These results show that the 
proposed PFTCS isrobust to single-sensor faults.The 
performance of the overall HFTCS for the 
foursensors is shown in Figure 7 in normal and faulty 
conditions.The system maintains an AFR of 14.6 in 
faultysituations, according to the results. The 
proposedHFTCS is resistant to sensor faults, 
preserving its performanceand thereby avoiding AFR 
degradation. Theresults represent that after a very 
minor glitch, the systemmaintains its steady state 
with the help of a robustSMC controller. Table 4 
illustrates the robustness of 
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Figure 6. Performance of PFTCS. 

 
Figure 7. Performance of HFTCS without noise. 
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the proposed HFTCS with ANN and SMC withoutnoisy 
conditions of sensors.After confirming adequate 
efficiency in noise-freeoperation, the system 
response is tested by integratingnoise into sensor 
measurements. Table 5 shows thenoise parameters 
introduced in the sensors. Greaternoise is 
incorporated for throttle and speed sensor 
measurementsdue to high sensor values. Due to the 
verylimited range, smaller noise is added in sensors 
EGOand MAP. In Figure 8, the effects of AFR are 
illustratedin normal and faulty conditions. The 
resultsdemonstrated that after very minor sparks in 
the output,the system achieves the set point even 
under faultyconditions. The AFR remains stable with 
small misfiresand the system continues to operate 
successfully in thenoisy conditions of sensors. The 
performance of theproposed HFTCS with noise 
introduced is shown inTable 6.The output response 

in Figure 8 is dominated by thePFTCS that is running 
in parallel with AFTCS. Theactive part performs 
post-fault optimal performancefor the active 
compensation by providing the estimatedvalue of the 
faulty sensor by ANN observer using the 
other healthy sensors. Since both controllers work 
inparallel, the active compensation effect does 
notbecome much evident due to the dominance of 
the passivecontroller. However, it becomes very 
much evidentin only active FTCS as shown in Figure 
5. 
 
 
Comparison with the existing works 
In this section, a comparison of the proposed 
HFTCSwith the existing models is discussed. We have 
designedan HFTCS with dedicated non-linear 
controllers 

 
Figure 8. Performance of HFTCS in noisy conditions. 

 
known as ANN and SMC. The previous work has 
notused the ANN and SMC together for HFTCS 
designfor the AFR system of the IC Engine. In the 
proposedsystem, SMC will form the passive part to 
reactinstantly to faults while ANN will optimize post-
faultperformance with active compensation. 
Moreover,Lyapunov stability analysis was performed 
to makesure that the system remains stable in both 
normal andfaulty conditions. The estimated values 
of the throttleand MAP sensors, as well as the 
accompanying meansquare errors (MSE), are shown 
in Shahbaz andAmin.4 ANN approach can cover the 
complete nonlinearrange of the MAP sensor, which is 
also less computationally 
expensive than lookup tables and hencepreferred. 
Due to its valuable functionalities of learning,self-

organization, and non-linear modeling 
capabilities,the ANN technique is currently becoming 
apreferred strategy in fault diagnostics.In Amin and 
Mahmood-ul-Hasan,14 the HFTCSwas proposed with 
Kalman Filters in the active partand a high-gain PI 
controller in the passive part. Thisalgorithm was 
limited to the linear range of the highlynonlinear 
sensors of the AFR control system. In Suet al.,15 the 
HFTCS was proposed for the sensors ofthe distillation 
column without using any intelligent 
control or data-driven technique. In Wang et al.,16 
theHFTCS was proposed for the uncertain 
networkedcontrol systems under a discrete event-
triggered communicationscheme that was not 
applied to the processplant. In Yang et al.,48 the 
authors focused on faulttolerantcontrol of Markov 
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jump systems (MJS) withItoˆ stochastic process and 
output disturbances. Aproportional-derivative sliding 
mode observer (SMO)and an observer-based 
controller are first devised andfabricated. In Yang et 
al.,49 the authors provided afault-tolerant 
compensation control strategy forMarkov jump 
systems against nonlinearity, simultaneousadditive, 
and multiplicative actuator failures. Afuzzy logic 
system (FLS) was used to estimate the nonlinear 
functions and by using the adaptive 
backsteppingapproach, an FLS-based adaptive fault-
tolerant compensationcontroller is developed. The 
proposed methodsworked very well for the 
stochastic disturbancesand simultaneous additive 
and multiplicative typefaults in the actuators. 
However, the stochastic delaysand actuator faults 
were not studied in this paper.The proposed HFTCS 
has PFTCS for AFR control,which is based on SMC, 

and AFTCS based on ANN.With the use of a fuel 
throttle actuator, the proposedHFTCS will 
compensate for the AFR degradation bythe AFR 
control. In the proposed system, SMC will 
form the passive part to react instantly to faults 
whileANN will optimize post-fault performance with 
activecompensation as shown in Figure 5. The 
previousworks mentioned in the literature have not 
yet utilizedany intelligent control technique like ANN 
for theAFTCS and regular sliding mode control for 
thePFTCS, as proposed in this paper. The proposed 
modelwas found to be robust to faults in the normal 
andnoisy conditions of the sensors. Therefore, the 
proposedHFTCS with ANN and SMC presents an 
optimum andreliable solution for AFR control in SI IC 
engines.Table 7 provides a comprehensive 
comparison of thesuggested strategy with previously 
used strategies. 

 
Conclusions 
 
In conclusion, this study successfully demonstrates 
the effectiveness of integrating artificial neural 
networks (ANNs) with sliding mode control (SMC) for 
managing the air-fuel ratio in internal combustion 
engines (ICEs) while ensuring robustness against 
sensor failures. The proposed hybrid control strategy 
not only enhances the precision of air-fuel ratio 
predictions but also maintains system stability and 
performance in the presence of potential sensor 
malfunctions. The ANN's ability to learn from varying 
engine operating conditions allows for adaptive and 
responsive control, significantly improving 
combustion efficiency and reducing harmful 
emissions. Meanwhile, the SMC framework 
effectively mitigates the adverse effects of sensor 
inaccuracies, ensuring consistent engine operation. 
Simulation results confirm that this innovative 
approach outperforms traditional control methods, 
offering a reliable solution to the challenges posed 
by sensor uncertainties. This research contributes 
valuable insights into advanced control strategies for 
ICEs, paving the way for the development of 
smarter, more efficient automotive technologies 
that align with the industry's goals for sustainability 
and reduced environmental impact. Future work 
should focus on real-world implementation and 
further refinement of the proposed system to 
address additional complexities in engine dynamics 
and operational conditions. 
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