
366 J Complement Med Res • 2020 • Vol 11 • Issue 1

JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH, 2020

VOL 11, NO. 1

10.5455/jcmr.2020.11.01.41

REVIEW ARTICLE Open Access

Implementation of Relations (Predicates) in Column-Based Intelligent

Systems
Aleksandr Mikhailovich Chesnokov, Chesnokov A.M.
Candidate of Technical Sciences,V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow

INTRODUCTION
Column-based intelligent systems are the systems
considered within the following model [3, 5].
There is a relatively small, but a finite set of names

U designated for naming random objects. Without

restricting the generality, it is considered that the

set of names U is a subset of the integer set Z .

In the set of names U there are non-intersecting

subsets called name domains. The number of
selected name domains is not constant. At any
moment new name domains can be introduced, and
more elements can be added into any name domain.
Selecting name domains in real data domains can be
caused by a number of reasons. For example, it can
be connected with the target purpose of the names
or their typification. One of the main reasons is the
need to make sure that there are no random name
conflicts in various parts of a big system.
Any finite set of names that belongs to a certain
name domain is called a pattern.

The patterns of any pattern set P can be
renumbered using names of a certain name domain

U :

{ | }iP p i U   .

An ordered pair (,)ii p is dubbed a column. A

column is designated as (|)ii p , where i is the

column name, ip is the pattern contained within

 Contact Aleksandr Mikhailovich Chesnokov V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow

 alex-ches@yandex.ru alex-ches@yandex.ru
2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution Non Commercial Share Alike 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/).

the column. Also, the designation ii p is used. In

this case the column name i is said to be a reference

or a pointer to the pattern contained in the column

ip . In its turn, the pattern ip

is said to have a name

i or to be known by the name i .

Mapping : ii p  is called name mapping. By

default it is understood that name mapping is
bijective (one-to-one). All cases when this is not
true are specified.
To give a pattern p a name i or to assign a name to

a pattern p i means to  make an addition that

()i p  to the name mapping.

A name i that was not used for pattern naming yet is

called an empty name. It can be presented as a
column with an empty pattern, i.e. a view column

(|)i  or i  , where  is an empty set.

Column patterns contain names of other columns
and empty names. Consequently, a column pattern
completely consists of the names of other columns,
each of which points to a corresponding pattern,
possibly, an empty pattern. In its turn, any name
from a non-empty pattern also points to its pattern,
etc. As a result, a complex structure of columns is
formed.
An index is any finite set of columns. The
composition of any pattern can change due to

ABSTRACT
The article considers the possibility of implementing relations
(predicates) in column-based intelligent systems and
introduces the main notions and definitions. The author
suggests the presentation of relations in such systems,
formulates the basic problems of implementing relations. They
also suggest the solution for implementation of relations
through the element-by-element comparison method and the
intersection method.

ARTICLE HISTORY

Received February 23, 2020,
Accepted March 17, 2020
Published June 25, 2020

KEYWORDS

artificial intelligence, column-
based intelligent systems, column,
relation.

mailto:alex-ches@yandex.ru
mailto:alex-ches@yandex.ru

Aleksandr Mikhailovich Chesnokov, Chesnokov A.M.

367
 www.jocmr.com

adding or deleting columns. These operations are
called addition and deduction of indexes and are

designated as + and. In the example below l of the

columns (|)k ki p is added to the index A :

1

(|)
l

k k

k

A i p


 .

Obviously, the index can be presented as a table
containing records "column name – names
contained in the column pattern". Such table
vertically consists of columns of variable size. In the
bottom line of the table there are column names.
Above each column name there are all names
contained within the column pattern. By default it is
assumed that column names and names in patterns
belong to different name domains.
If patterns are unordered name sets, then the order
of name recording in column patterns can be
random. If the patterns are ordered, then the name
recording in column patterns is carried out in a
certain order, for example, from the bottom up, i.e.
the first name of the pattern is in the first line above
the line, second, in the second line, etc. Below we

provide a simple example of an index A with
patterns in the form of unordered sets consisting of

three columns (1|{1, 3}) (1|{2, 3, 4}) and

(3 |{4, 5}) .

 A

 4

3 3 5

1 2 4

1 2 3

A column-based intelligent system comprises one
or several indexes and a mechanism that works
with them, which is called a column machine.
Receiving information about the external
environment in the form of patterns, a column
machine forms new columns, changes the existing
ones, deletes the unnecessary ones and performs all
other operations with the columns.
Knowledge in the considered systems is presented
in columns, and the process of knowledge
accumulation is based on memorization of new
patterns under certain names. Thus, the elementary
basic problems that needs to be solved for proper
system functioning are, obviously, the direct
problem (to obtain a pattern name by its pattern)
and the inverse problem (to obtain a pattern by its
name). Memorization of new patterns is carried out
as a part of the direct problem. If when solving this
problem a nameless pattern is found, then the
column machine assigns a certain name to it and
saves the corresponding data.
Technically, memorization of any pattern under a
certain name always means forming a

corresponding column (|)ii p . At the same time, it

does not mean that the data will be stored in this
form in the system. The inner presentation of
memorized data is defined only by the method of
solving basic problems and the way of its
implementation and can significantly differ from its

formal description as a column (|)ii p . An example

of method for which formal description coincides
with inner presentation of data is the method of
solving basic problems on the basis of the element-
by-element comparison of patterns [3–5]. In other

cases a formed column (|)ii p most probably will

be stored in a random form, and solving basis
problems will not only show its existence, but will
also help to receive its patterns by the column
name, and a column name, by its pattern.
By solving basic problems, a column machine

basically follows links ip i in the direct and

ii p in the inverse problem. This provides the

basis for solving all other problems. Solving any
kind of such problem basically presents a chain of
link following until the result is obtained.
Since the considered model is finite, the solution of
basic problems always exists. Thus, a universal
method of solving them is the afore-mentioned
method of element-by-element pattern
comparison. From the theoretical standpoint, this is
enough to estimate the possibilities of solving
different problems with the help of column-based
intelligent systems. However, if we are talking
about practical application of such systems, we
need more efficient methods of solving basic
problems, especially high dimension problems.
One of the possible methods of more efficient
solving of basic problems is the intersection method.
The idea of the intersection method goes back to
book indexing. For each section there is a set of
pointers to the pages of the book where you can find
this section. A request relating to several sections,
obviously, corresponds to intersection of sets of
pointers for these sections. Such methods for
pointer tables (indexes) are used in search engines
[6].
In early 2000s А.М. Mikhailov demonstrated that
the intersection method can be used for working
with patterns [8, 9]. Within the new approach
dubbed the index approach the intersection method
is applied mainly when solving problems of
recognition [1, 2, 10].
On the basis of the results [8, 9] a version of the
intersection method was proposed to investigate
column-based intelligent systems [3, 5]. For this
version there were obtained necessary and
sufficient conditions for solutions of the direct
problem, solving which does not cut down on the
universality of the method. This version of the
intersection method is also characterized by the

http://www.jocmr.com/

Implementation Of Relations (Predicates) In Column-Based Intelligent Systems

368 J Complement Med Res • 2020 • Vol 11 • Issue 1

complete absence of the necessity to compare
patterns element by element.
It is important to emphasize that the intersection
method is not an essential component of column-
based intelligent systems. This is only one of many
possible methods of solving basic problems. Instead
any other methods and means can be used, in
particular, hardware-software methods that assure
high efficiency of solving basic problems of a certain
type.
The researches [3–5] considered solving various
basic problems for patterns in the form of
unordered finite sets, for patterns in the form of
vectors or finite sequences, as well as for patterns
in the form of finite multisets [7]. They showed the
ability of column-based intelligent systems to
operate with incomplete information [4]. It also
turned out that forecasting is an inherent property
of such systems. [3, 5] proved the possibility of
implementing arbitrary Boolean functions in the

form : nf B B , where {0,1}B  . This article is

dedicated to the possibility of implementing

relations (predicates)
nr A , where

...nA A A   is a finite Cartesian power of a set

A . In the following chapter the author provides
main definitions and considers presentation of
relations in column-based intelligent systems. Then
basic problems and the implementation problem
are formed. Later a solution for implementing
relations through the element-by-element
comparison method and the intersection method is
presented.

PRESENTATION OF RELATIONS

A subset
nr A is called a n-local or n-ary relation

in a set A , where
nA is a finite Cartesian power

...nA A A   . The number n is called rank or

arity of the relation r . A subset
nr A is also

called a n-local or n-ary predicate in the set A .

Let us consider a name set U and a finite Cartesian

power ...nU U U   . Let us assume that
nr U is a certain n-ary relation inU . It consists

of a finite number of patterns
1(, ...,) n

np i i U  .

By specifying a corresponding name domain for
each coordinate in patterns p r , we can define

the relation inU .
A subset 1 ... nr U U   is called a n-ary relation

(predicate) inU , where jU is a name domain of

the j-coordinate of the patterns p r 1, ...,j n .

Let us assume that 1 ... nr U U   is a certain

n-ary relation inU . All patterns of this relation

rkp r can be named using names rk pi U ,

where pU is a name domain for patterns rkp . As a

result of substituting patterns with their names the

relation r becomes 1{ , ..., }r rlr i i  , where rki is

the name of the pattern rkp , 1, ...,k l , | |l r ,

| | is the number of elements (potency) of the set.

It is obvious that the relation as a pattern

1{ , ..., }r rlr i i  bijectively corresponds to the

relation r . Bijective mapping :r r r  is defined

as
1() { (), ..., ()}r p r p rlr i i    , where

:p i p  is mapping of pattern naming

1 ... np U U   .

To set a relation r , we need to single out only

patterns rkp r 1, ...,k l

out of all patterns.

Obviously, it is enough to name a pattern

1{ , ..., }r rlr i i  by taking any pure name R Ri U ,

where RU is the name domain for relations:

 pr1 prl

  … 

 iR  {ir1, …, irl}

 R
Here R indicates the index that consists of columns

(|)rk rki p , 1, ...,k l .

The name Ri of the relation r can also be

interpreted as the name of the relation r . The

corresponding bijective mapping :R Ri r 

equals R r r   , where :r Ri r  is the

mapping of pattern naming r , composition of

mappings 1 2 1 2()() (())f f x f f x .

THE PROBLEM OF RELATION
IMPLEMENTATION

Suppose nR is a set of relations of the arity m ,

1 m n  and is such that all patterns p contained

within these relations belong to the set of patterns

1

n
m

m

P P


 , where
1 ...m

mP U U   , jU is the

name domain of the j--coordinate, 1, ...,j n .

Since for any nrR the corresponding relation

1{ , ..., }r rlr i i  is a pattern in the form of an

unordered name set, basic problems for them are
formed and solved in a regular way[3–5]. Thus, in

the direct problem for relation 1{ , ..., }r rlr i i  we

Aleksandr Mikhailovich Chesnokov, Chesnokov A.M.

369
 www.jocmr.com

need to find its name Ri . In the inverse problem for

R Ri U  we need to find the relation r .

What is more important for estimating the
possibilities of column-based intelligent systems is
the problem of relation implementation. It is
formulated in the following way.
Suppose a system memorized some number of

relations (predicates) nrR . When solving the

implementation problem, first for p P  we

need to find the names of all relations nrR

known to the system that are p r .

Solving the problem of relation implementation
through the element-by-element comparison
The relation representation that we obtained above
defines the solving algorithm of the implementation
problem. To solve it with the help of the method of
element-by-element comparison [3–5], the system

uses indexes A , rA and RA . The index A

memorizes patterns rkp , the index rA stores

patterns r , and the index RA contains names for

patterns rkp .

In the original state A , rA  and RA  .

Suppose there is a need to memorize a certain

relation 1{ , ..., }r rl nr p p R . First, we solve the

direct problem for all patterns rkp r . Each

pattern rkp is compared element by element with

patterns from all columns of the index A . If a match

is found, then the name pi of the column

(|)p pi a A is such that rk pp a is the name of

the pattern rkp . If no match is found, then the

pattern rkp is new. Any pure name rk pi U is

chosen for it and a column (|)rk rki p is added to the

index A . The name rki is the solution of the direct

problem and is the name that the pattern rkp will

be known under.

After all names rki have been found, we solve the

direct problem for the pattern 1{ , ..., }r rlr i i  . The

pattern r is compared element by element with

patterns from all columns of the index rA . If a match

is found, then the name ri of the column

(|)r r ri a A is such that rr a  is the name of the

relations r and r . This means that the relation r

is already known to the system under the name ri .

If no match has been found, then r is a new
relation that needs to be memorized. Any pure

name R Ri U is added to it, and a column (|)Ri r

is added to the index rA . At the same time, index

RA adds l of the columns (|{ })rk Ri i .

All other relations nrR are memorized the same

way. Moreover, because of the factorization by the

name [3, 5] a pattern Ria from any column

(|)Ri Ri a A contains the names of all relations of

the same arity that contain the pattern p known

under the name i .

Suppose for a certain pattern p P there is a need

to solve the implementation problem and find the
names of all relations known to the system that

nrR would be p r . At first, the name of the

pattern p needs to be found through its element-

by-element comparison with the patterns from all

columns of the index A . If no match is found, then
the pattern p is a new unknown pattern. This

pattern cannot belong to relations known to the

system. If a match is found, then the name pi of the

column (|)p pi a A is such that pp a it is also

a name of the pattern p .

Then the column (|)p Rp Ri a A is taken. If the

index RA does not have a column under such name,

then the pattern p does not belong to any of the

relations known to the system. If not, the index of

the column
Rpa contains the names of all known

relations r such as p r .

As was mentioned earlier, solving any kind of
problem in column-based intelligent systems
basically presents a chain of link following until the
result is obtained. When solving the problem of

relation implementation for any pattern p P ,

this chain comprises only two links – one link for
the direct problem and another for the inverse
problem:

пр обр

p Rpp i a  .

Solving the problem of relation implementation
through the intersection method
The general algorithm of solving the
implementation problem stays the same. It includes

solving the direct problem for patterns rkp r and

1{ , ..., }r rlr i i  , where rki is the name of the

pattern rkp , 1, ...,k l , | |l r . For patterns rkp

the system uses the index 1{ , ..., }nA A A , where

http://www.jocmr.com/

Implementation Of Relations (Predicates) In Column-Based Intelligent Systems

370 J Complement Med Res • 2020 • Vol 11 • Issue 1

jA is the index for j-coordinate, and the function

()pm i defined through the set of ordered pairs

(,)pi m that stores dimension of the known

patterns rkp . For patterns 1{ , ..., }r rlr i i  we use

the index RA and the function ()Rl i defined by the

set of ordered pairs (,)Ri l that contains a number

of elements in the known patterns r [3–5].

Also further the indexes B and RB will be

considered, which is not needed for solving the
implementation problem. With their help it can be

demonstrated how for any found relation name Ri

the inverse problem can be solved and the relations

r and r can be obtained.

In the original state A , B  , ()pm i  ,

RA  , RB  and ()Rl i  .

Suppose there is a need to memorize a certain m-

ary relation 1{ , ..., }r rl nr p p R .

First, the direct problem is solved for all patterns

rkp r . For each pattern 1(, ...,)rk k kmp i i the

coordinate-by-coordinate intersection is calculated

1

(,)
m

rk kj
j

A p a


 ,

where kja is the pattern of the column

(|)kj kj ji a A , kji is the name that is the j-

coordinate of the pattern rkp , 1, ...,j m [3–5].

If (,)rkA p  and there is at least one name

(,)rki A p that ()m i m , then such name is

the only one and is the name under which the

pattern rkp is known.

In any other case the pattern rkp is an unknown

new pattern that needs to be memorized. For this
the column machine selects any pure name

rk pi U , where pU is the name domain for

patterns rkp and performs addition:

1 1(|{ }) { (|{ }), ..., (|{ })}rk rk k rk m km rkA p i A i i A i i    ,

(|)rk rkB i p ,

where kji is the name that is the j-coordinate of the pattern rkp , 1, ...,j m . Besides, the pair (,)rki m is

added to the definition of the function ()pm i . The name rki is the solution of the direct problem and is the

name under which the pattern rkp will be known.

After all patterns rkp have their found names rki , the direct problem is solved for the relation

1{ , ..., }r rlr i i  that is a pattern in the form of an unordered name set. For this the intersection is

calculated

1

(,)
l

R k
k

A r a


  ,

where ka is the pattern of the column (|)rk k Ri a A .

If (,)RA r    and there is at least one name (,)Ri A r  that ()l i l , then this name is the only one

and is the name under which the relation r [3–5] is known.

In any other case the relation 1{ , ..., }r rlr i i  is new and needs to be memorized. For this the column

machine selects any pure name R Ri U , where RU is the name domain for relations, and performs

addition:

1

(|{ }) (|{ })
l

R R R rk R

k

A r i A i i


   ,

(|)R RB i r .

Besides, in the function definition ()Rl i the pair (,)Ri l is added.

All other relations nrR are memorized the same way. Because of the factorization by the name [3–5] a

pattern of any column (|)Ri Ri a A contains the names of all relations of the same arity that contains the

pattern p known under the name i .

Suppose for a certain pattern 1(, ...,)mp i i P  the implementation problem needs to be solved and the

names of all known relations r that p r need to be found. First, for the pattern p the direct problem is

Aleksandr Mikhailovich Chesnokov, Chesnokov A.M.

371
 www.jocmr.com

solved. For this the coordinate-by-coordinate intersection (,)A p is calculated. If (,)A p  or

()m i m for (,)i A p  , then the pattern p is the new pattern that cannot belong to the relations

known to the system.

If (,)A p   and there is at least one name (,)pi A p that ()pm i m , then this name is the only

one and is the name under which the pattern p is known. Then the column (|)p Rp Ri a A is considered.

If the index RA does not contain such column, then the pattern p under the name pi does not belong to

any of the known relations. If such column does exist, then its pattern
Rpa contains the names of all known

m--ary relations r that p r .

For any name R Rpi a a relation known under this name can be obtained. First, the inverse problem is

solved for the relation r . The relation 1{ , ..., }r rl Rr i i b   , where Rb is the column pattern

(|)R R Ri b B . Then the inverse problem is solved for all names rki r . As a result, for the relation r

under the name Ri we obtain 1{ , ..., }r rlr b b , whereе rkb is the name of the column (|)rk rki b B ,

1, ...,k l [3–5].

Example. Suppose that for relations with arity 1 3m  the system has already memorized two binary

relations:

1 {(1, 2), (2, 2), (2, 3)}r  ,

2 {(1,1), (2, 2), (3, 3)}r  .

They correspond to the following relations:

1 {1, 2, 3}r ,

2 {2, 4, 5}r  ,

where 1 – is the name of the pattern rkp that equals (1, 2) , 2 is the pattern name (2, 2) , 3 is the pattern

name (2, 3) , 4 and 5 are the pattern names (1,1) and (3, 3) .

At the same time the indexes A , B , RA , RB , of the functions ()m i and ()l i become :

 A1 A2 A3 B

4 3 6 6 2 5 2 2 3 1 3 1

1 2 5 4 1 3 1 2 2 1 3 3

1 2 3 1 2 3 1 2 3 1 2 3 4 5 6

 m(i)

i 1 2 3 4 5 6

m 2 2 2 2 2 2

 AR BR

 3 5

 2 2 4 l(i)

1 1 1 2 2 1 2 i 1 2

1 2 3 4 5 1 2 3 l 3 3

Suppose for the pattern (1, 3)p  we need to

define the names of all known patterns r that
p r . By solving the direct problem for the

pattern (1, 3)p  we obtain (,)A p  , i.e. the

pattern is new and cannot belong to the known
relations.

Let the implementation problem be solved for the

pattern (3,1)p  .Coordinate-by-coordinate

intersection (,) {6}A p  and (6) 2m  , i.e. this

pattern p is known under the name 6. However, in

the index RA there is no column under the name 6.

http://www.jocmr.com/

Implementation Of Relations (Predicates) In Column-Based Intelligent Systems

372 J Complement Med Res • 2020 • Vol 11 • Issue 1

Consequently, the pattern (3,1)p  does not

belong to any of the known relations.
Finally, let the implementation problem be solved

for the pattern (2, 2)p  . For it we obtain

(,) {2}A p  and (2) 2m  , i.e. p is the pattern

under the name 2. The pattern of the column 2 of

the index RA equals{1, 2} . This means that the

pattern (2, 2)p  belongs to binary relations

known under the names 1 and 2.
These relations can be found. By solving the inverse

problem for the patterns r through the index BR we
obtain that the relation under the name 1 is the

relation 1 {1, 2, 3}r , and the relation under the

name 2 is the relation 2 {2, 4, 5}r  . By solving the

inverse problem for the patterns p through the

index B it can be easily established that the pattern

p under the name 1 is the pattern (1, 2) , the

pattern under the name 2 is the pattern (2, 2) , etc.

Consequently, the relation under the name 1 is a

binary relation 1 {(1, 2), (2, 2), (2, 3)}r  , and the

relation under the name 2 is the binary relation

2 {(1,1), (2, 2), (3, 3)}r  .

REFERENCES
1. Mikhailov A. M. Recognition of patterns

through their indexing. Avtomatika i
telemekhanika [Automatics and
telemechanics], 2012, No. 4, pp. 151–161. (in
Russian)

2. Mikhailov A. M. Index approach to
recognition of patterns and videos.

Avtomatika i telemekhanika [Automatics and
telemechanics], 2014, No. 12, pp. 139–152.
(in Russian)

3. Chesnokov A.M. Column-based intelligent
systems. Upravleniye bolshimi sistemami
[Management of big systems], 2013,
No. 46, pp. 118–146.(in Russian)

4. Chesnokov A.M. Column-based intelligent
systems with incomplete information.
Upravleniye bolshimi sistemami
[Management of big systems], 2014, No. 50,
pp. 84–98. (in Russian)

5. Chesnokov A.M. Vvedeniye v obshchuyu
teoriyu kolonok [Introduction to the general
column theory]. Moscow, Institute of Control
Sciences of RAS Publ., 2012, 141 p.

6. Barroso L.A., Dean J., Hölzle U. Web Search
for a Planet: The Google Cluster Architecture.
IEEE Micro, 2003, Vol. 23, Iss. 2, pp. 22–28.

7. Chesnokov А.М. Finite Multisets as Patterns
in Column-Based Intelligent Systems.
Automation and Remote Control, 2015,
Vol. 76, No. 9, pp. 1681–1688.

8. Mikhailov A., Pok Y.M. Artificial Neural
Cortex. Proceedings of Artificial Neural
Networks in Engineering Conference (ANNIE
2001), Nov. 4−7, 2001, St. Louis, Missouri,
U.S.A.

9. Mikhailov A. Biologically Inspired Artificial
Neural Cortex and its Formalism. World
Academy of Science, Engineering and
Technology, August 2009, Vol. 56, pp. 121.

10. Mikhailov A. Indexing-based Pattern
Recognition. Advanced Materials Research,
2012, Vols. 403–408, pp. 5254–5259.

