

WWW.JOCMR.COM

A Fuzzy MCDM Approach for Prioritizing Iran's Biotechnology Projects: A Practical Model

Mostafa Ghanei¹, Mahmood Tavallaei ^{2*}, Seyed Hasan Saadat³, Sharareh Hedayati⁴, Atiyeh Safardoust Markiye⁴, Amir Najafi⁵, Bahram Akbari⁶, Hamidreza Tahouri⁷

¹Biotechnology Development Council, Vice-Presidency for Science and Technology of Islamic Republic of Iran, Tehran, Iran
 ² Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
 ³ Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
 ⁴ Biotechnology Development Council, Vice-Presidency for Science and Technology of Islamic Republic of Iran, Tehran, Iran
 ⁵ Associate Professor, Department of Industrial Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
 ⁶ Assistant Professor, Department of Management, Malek Ashtar University of Technology, Tehran, Iran
 ⁷ Faculty member of Industrial Engineering and Management Department, Maleke-Ashtar University of Technology, Tehran, Iran.

ABSTRACT

The problem complexity of multi-criteria decision-making (MCDM) is a great issue in the priorities of biotechnology, which need robust MCDM methods. Fuzzy MCDM uses fuzzy numbers to handle and measure inaccuracies and ambiguities. MCDM is capable of providing a methodical approach that simultaneously uses decision criteria (i.e., benefit and cost information) and decision makers' opinions in choosing the optimal alternative from a list of alternative options. The aims of this study were (1) to give a comprehensive view of factors contributing to the success of biotechnology in Iran, (2) to prioritize these factors, (3) to provide a model for solving diverse decision problems by determining biotechnology research priorities, and (4) to develop a comprehensive scientific roadmap for biological fields. We developed a fuzzy multiple criteria decision making (MCDM) model combines the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in decision-making with fuzzy data, where the decision-making team acquires the ability to select the appropriate option in an environment of vague criteria. Detailed analysis is also presented. The ranking of projects and priorities was done using MCDM techniques, scientometric map-based verification, preparation of a tree of priorities and needs of universities and research centers. Priority areas in terms of universities and centers were extracted, including four key areas, 274 key sub-areas, 21 criteria, and 48 sub-criteria. and then allocated to the universities. These findings demonstrated that the prioritization findings were subject to a systematic ranking by fuzzy multiple criteria decision making (MCDM) model via all scenarios of weighting priorities.

Corresponding Author e-mail: tavalla.mah@gmail.com

How to cite this article: Ghanei M, Tavallaei M, Saadat H S, Hedayati S, Markiye S A, Najafi A, Akbari B, Tahouri H (2023), A Fuzzy MCDM Approach for Prioritizing Iran's Biotechnology Projects: A Practical Model. Journal of Complementary Medicine Research, Vol. 14, No. 6, 2023 (pp. 163-180)

BACKGROUND

The knowledge-based economy is an economic system that relies on the production, distribution, and application of knowledge and information, where investment in knowledge and knowledge-based industries is given special attention [1]. In such an economy, knowledge is the main driver of growth, wealth creation, and employment in all fields of activity. In the transition to a knowledge-based economy, improving collaboration between industry and academia is an important factor. Globalization, the use of science as a strategy to create competitive advantage in companies, and the emergence of science-based industries are three of the most important elements that justify the common connections between companies and research organizations [2].

In the knowledge-based economy, academia, industry, and government are the most important institutions. To theorize and analyze the relationships of these institutions, researchers have followed different approaches, such as the National Innovation System and the Triple Helix perspectives.

KEYWORDS: Fuzzy multiple criteria decision making (MCDM), Biotechnology priorities, Iran

ARTICLE HISTORY: Received: Jun 14, 2023 Accepted: Jul 11, 2023 Published: Aug 09, 2023

DOI: 10.5455/jcmr.2023.14.06.14

In the model of the National Innovation System, each of the institutions has its own clear and defined boundaries: Technological innovation is defined as the specific work of industry, the development of science and education are the exclusive work of academia, and policy-making and motivation for innovation are the exclusive work of government. Innovation occurs through the interaction of industry and academia in the research and development (R&D) marketplace. The National Innovation System is composed of components that interact with each other to produce economically useful knowledge to disseminate and commercialize it [3,4]. The third level of complexity in this system is called the "knowledge-based innovation system" or "Triple Helix pattern," which is also considered as one of the important components of the knowledge-based economy [5].

The concept of the Triple Helix was introduced by Etzkowitz and Leydesdorff (1995) [6]. In this model, the potential of economic development and innovation in the knowledge society is created when elements of academia, industry, and government are combined to create new social and institutional structures to produce, transfer, and apply knowledge [7]. In this model, the relationship between academia, industry, and government is explained as a network with three main arms, and there is a planned division of labor between these three sections. According to this model, universities are producers and transmitters of knowledge, and industries are producers of services and products, while governments have a regulatory role among them [8]. When academia, industry, and government participate in university research for economic development, a network of interactions is created in a helix [9]. The lack of proper communication between these three sectors is one of the problems in developing countries, but in developed countries, this type of communication has been properly established, and, generally, the commencement of industrial developments has been originated from academia.

The problem of insufficient interaction between academia and industry is a structural problem that goes back to economic structures in developing countries (such as Iran). Overcoming this obstacle requires a precise definition of the issue and the scope of activities in all three sectors.

Biotechnology is one of the most important and empowering scientific fields in Iran. Strategic technologies (such as biotechnology) through the impact on economic components (including the production of new and effective products in agriculture, medicine, nutrition, environment, alternative fuel sources, etc.) create wealth and prosperity in the economy.

In this article, based on the Triple Helix approach, Iran's policies toward the biotechnology sector in the form of "national labor division of biotechnology" were discussed to identify potential areas of cooperation between industry and academia with minimal involvement of government.

In the last two decades, Iran's biotechnology management has put effective local and thematic activities on the agenda to promote the development of technology in research and industrial fields. It is clear that a significant volume of these activities has no outcomes due to poor knowledge in managing new technologies. Therefore, using an appropriate strategy is necessary to significantly improve the productivity and development of biotechnology research.

In this regard, prioritization would lead to great achievements, such as reducing the time to achieve the centers' priorities and acceptable relative accuracy, determining point, regional, and national priorities, assisting the Biotechnology Development Council for systematic and intelligent support of collections, reaching a national agreement on biotechnology research priorities, writing dissertations based on priority needs, preparing basic scientific databases in the field of biology, and carrying out custom projects and science production.

Consistent allocation plans are required to prioritize biotechnology benefits and improve the productivity of research and development in this technology with an appropriate mechanism. Hence, developing an effective and dynamic mechanism for biotechnology prioritization is crucial and regarded as the only progress method for directing dissertations to priority needs.

In order to solve different multi-criteria decision-making (MCDM) challenges, different techniques have been used in the literature. Decision-making techniques have received widespread attention in various fields, of which MCDM is the most critical [10-13]. MCDM challenges face inaccuracies and uncertainties. Fuzzy MCDM uses fuzzy numbers to handle and measure inaccuracies and ambiguities [14]. Regarding the need to deal with ambiguity in real-life issues, several approaches and theories have been developed [15]. Various procedures have been defined for this technique, including structuring, planning, and solving diverse decision problems using multiple criteria [16-18].

MCDM is capable of providing a methodical approach that simultaneously uses decision criteria (i.e., benefit and cost information) and decision makers' opinions in choosing the optimal alternative from a list of alternative options [19].

Fuzzy approaches are commonly applied for decision-making [20], such as data envelopment analysis (DEA) [21], analytic hierarchy process (AHP) [22], fuzzy analytic network process (FANP) [23], fuzzy AHP [24], fuzzy goal programming [25], etc. In the present study, MCDM is adapted to the national labor division of biotechnology to determine biotechnology priorities. FANP was performed to address the problem of dependence and feedback among each measurement criterion, as well as the weights of the evaluation criteria among decision makers, including owners, users, and expert groups. Framework tools are capable of ranking the alternatives regarding the decision criteria, which have various measurement units. In Iran, a comprehensive scientific plan is needed to achieve the goal of Iran's 20-Year Vision Plan.

According to the needs, Iran's Biotechnology Development Council has set priorities in the set of short-term measures and its management in two levels of immediate and future measures for research and practical applications. Therefore, the aims of this study were (1) to give a comprehensive view of factors contributing to the success of biotechnology in Iran, (2) to prioritize these factors, (3) to provide a model for solving diverse decision problems by determining biotechnology research priorities, and (4) to develop a comprehensive scientific roadmap for biological fields.

MATERIALS AND METHODS

Study Population and Sampling

This study is a descriptive cross-sectional study for the national division of labor, collecting data at a point in time. Furthermore, this research is part of applied studies because it leads to the practical application of knowledge. In addition, the present study is a field study because the research data are collected using statistical samples, questionnaire tools, and

interviews.

г

The criteria for evaluating the division of labor and their prioritization at the national level are given in Table 1.

Table 1: The criteria for evaluating the division of labor and their prioritization at the national level

Code	Criteria	code	Sub-criteria
C1	Research output	F1	Research product (cultivar, commercial hybrid, scientific article,
			patent, final product, patent and product)
C2	Need to	F2	The bottleneck of technology
	technology or	E2	Country poods
	product/ Immediate or	F3 F4	Country needs
	future	14	Energing and innovative technology
C3	Impact on welfare	F5	Impact on health / treatment
	and general issues	F6	Provide food security
	of life	F7	Impact on energy
		F8	Impact on water and natural resources
		F9	Effect on reducing water consumption
		F10	Effect on reducing input consumption
64	Economic	F11 E12	Impact on employment and entrepreneurship
C4	achievement	F12	Economic value added
	achieveniene	F14	Effect on import han
		F15	Effect on farmers or beneficiaries
		F16	Effect on reducing production costs or producing a cheaper product
		F17	Impact on the prevention of raw material sales
C5	The importance of	F18	Value / necessity for region / province
	planning		
C6	Impact on	F19	Biological recovery
	environmental	F20	Bio-recycling
	ISSUES	F21	Revival of soil resources
		F22	Increase water resource efficiency
		FZ3	Environmental Protection Reduction of pollutants
		F25	Reduce pesticide consumption
C7	Impact on culture	F26	Impact on community culture
	(positive or	•	
	negative)		
C8	Impact on	F27	Preservation of genetic resources
	resources and	F28	Production of a new product
<u> </u>		F29	Other Technology rival
69	rechnological	F 3U F 21	The future of technology
	attractiveness	F31 F32	Supergy with other technologies
		F33	The complexity of technology
		F34	The cost of acquisition
		F35	Market
C10	Existence of	F36	Hardware required
	infrastructure		
C11	Existence of	F37	Knowledge dependence
C 4 2	knowledge	F 20	Delete d fielde of study
C12	Cooperation and	F38	Related fields of study
	capacity	F 39	Annual student recruitment capacity
	capacity	F41	Share cooperation capacity (national and international)
C13	Presence of	F42	University feature to select priority
5.5	special abilities	F43	Duration or speed of achievement
		F44	Logistic feature (geographical)
		F45	Previous experiences and preparation
		F46	Existing specialized manpower
		F47	
C14	Relation with	F48	Industrialization capacity (laboratory, semi-industrial and
645	industry	F (2)	industrial)
C15	Increase water-	F49	

	use efficiency in crops and horticulture		
C16	Attract international cooperation	F50	
C17	Attract international funding	F51	
C18	International importance	F52	
C19	Superiority	F53	
C20	Tourism	F54	
C21	Passive Defense	F55	

The population studied in this research is each university and scientific research center as a sample unit. In this study, cluster sampling was used when study groups were mutually homogeneous yet internally heterogeneous. Attempts were made to use the samples introduced by the Biotechnology Development Council. Therefore, the formula was not used to calculate the number of samples.

Data Collection Tool

In this research, a questionnaire was used to collect data, and various first- and second-hand sources (such as books, the Internet, journals, and articles) were used to explore the research background.

Questionnaires in this research were used in three steps as follows:

- for the selection and validation of criteria,
- for priority selection and validation, and
- for optimal allocation of priorities.

Statistical Methods

MCDM was applied to analyze the data. The collected data are summarized in frequency distribution tables and diagrams. Every collective and joint action needs coordination and explanation of the executive steps for the implementation of planned and scheduled programs by the executors.

The following steps were considered in the biotechnology prioritization process: the preparation of a common framework for obtaining information from universities and research centers, the development of a guideline for prioritization, and the purposeful division of national labor. The FANP method, a multi-criteria prioritization method, was used to determine the weights of the indicators and rank the options.

Tables were converted into information forms, and templates (along with the guidance document) were sent to the country's research collections. Priorities were set, and then the submitted forms were completed accurately and completely by academic and research centers. The aggregation of the priorities set by the biotechnology centers of the country was done, and the suggested items of the subgroups of the biotechnology headquarters were considered according to the background and compliance with the policies and documents of the upstream country. Biotechnology priorities were finalized based on the proposed items. The technological priorities of each university and research center were presented, and then the financial and organizational support of the Vice President for Science was provided for the university and research centers. Feedback on this process was provided to the country's academic and research centers.

Accordingly, the main stages of the activities can be announced as follows:

1- biotechnology priorities from the perspective of the Biotechnology Development Council working groups,

2- the three priorities of universities (self-expression), and

3- self-declaration adaptation to the priorities of the working groups:

• extracting priorities that are fully consistent with the self-declaration,

• extracting self-declarations in accordance with the priorities of the working groups but similar priorities were included (duplicate),

• subjective Work Breakdown Structure (WBS) a (failure) and subject-based division between centers offering similar (duplicate) priorities.

• use of the priority table to divide similar invincible items.

4- communicating the priorities divided to the centers and establishing them for support and monitoring, and

5- targeting priorities to achieve the outputs and results desired by the Biotechnology Development Council and results-based monitoring.

RESULTS

An attempt was made to extract the three priorities of the university centers in accordance with the initial priorities of the various working groups of the Biotechnology Development Council working group.

A: Design and adjustment of the questionnaire and its approval by the Biotechnology Development Council working group

Equivalent to each of the questions in the questionnaire (as a criterion), a variable was defined in SPSS version 16 (SPSS Inc., Chicago, Ill., USA). All the constructs of the studied model were formed based on the mean scores of the related questions. For example, ease of use for each questionnaire was formed by calculating the average score given to questions useful 1, useful 2, and useful 3. The scoring of the questions was based on a five-point Likert scale.

Due to their positive expression, the scoring method was downward trend scoring. Downward trend scoring for positive questions has been completely disagree, disagree, having no opinion, agree, strongly agree.

Reliability Analysis

The reliability and validity of the questionnaire were also examined. The Cronbach α was used to assess the reliability of the questionnaire. After collecting the questionnaires, reliability analysis was performed on the questionnaire questions to ensure reliability. In this analysis, the Cronbach α coefficient on the questions of each variable was calculated using SPSS version 16. The Cronbach α is used to calculate the internal consistency of measuring tools, such as questionnaires or tests that measure different characteristics.

These values for each structure and the whole questionnaire are higher than 70% (0.727); thus, it can be claimed that this tool has high validity.

Exploratory Factor Analysis

All items were derived from a conceptual framework that is itself a repetition of the extensive literature review. Therefore, the construct validity of the data collection tool was confirmed. The convergent and divergent or diagnostic and convergent validity of the structures was tested using principal component analysis (PCA) with the help of varimax rotation in exploratory factor analysis. For this purpose, exploratory factor analysis was performed separately to examine each of the structures. The result of exploratory factor analysis identified only one factor with specific values higher than 1 for each of the structures. The Kaiser-Meyer-Olkin measure of sampling adequacy of each structure was greater than 0.6 (0.708), indicating the adequacy of sampling.

Furthermore, the significant value of Bartlett's test for all structures was <0.05 (Sig = 0.000), indicating that the matrix was not a unit and factor analysis could be used to identify the structure. The results of this analysis also introduced six structures with specific values higher than 1, which together explained about 68% of the total variance.

Validity Analysis

In the present study, the content validity was used to determine the validity of the measurement tool because this method ensures that the tool has a sufficient number of appropriate questions to measure the concept (Kalantari, 2012, p. 35). Also, construct validity was used to test the validity of the questionnaire questions. For this purpose, the final questionnaire was obtained to collect data after consulting with experts in the field of biotechnology.

Confirmatory Factor Analysis

Confirmatory factor analysis (CFA) was applied using LISREL version 8.54 (Scientific Software International, Inc., USA) to assess the validity of the items and to ensure the onedimensionality of the scales of each structure and the validity of the evaluated model. Table 2 shows the standard coefficients and significant values of the studied model or biotechnology tree, respectively.

Ro ♥	Model Fitting Criteria	index	Dimension	Desirable limit	Result
1	Chi-square relative	χ^2	1/71	<3	very well
2	Root Mean Square Error of Approximation	RMSEL	0/042	<0/1	A good fit
3	Root Mean Square Residual	RMR	0/051	About zero	Acceptable
4	Normed fit index	NFI	0/96	>0/90	Acceptable
5	Non-normed fit index	NNFI	0/98	About one	Very well
6	Comparative fit index	CFI	0/98	>0/90	Very well
7	Relative fit index	RFI	0/96	>0/90	Very well
8	Incremental Fit Index	IFI	0/98	>0/90	Very well
9	Goodness-of-fit index	GFI	0/94	>0/90	Very well
10	Adjusted goodness-of-fit index	AGFI	0/92	>0/90	Well

Table 2: The goodness of fit index (GFI) for model or tree of biotechnology

Root Mean Square Error of Approximation

The root mean square error of approximation (RMSEA) is actually a test of the deviation of any degree of freedom. RMSEA <0.05 indicates a good fit of the model. Values higher than 0.08 indicate a reasonable error for approximation in the population. Models with an RMSEA of 0.1 or more have a poor fit. RMSEA in this model is equal to 0.042, indicating that the model has a relatively good fit.

 $\frac{x^2}{df}$ test

The X^2 test simply shows whether the model describes the structure of relationships between the observed variables. The value of this statistic should be <3. Regarding model variables, the value of this statistic was found to be 1.71.

Root Mean Square Error (RMSE)

RMSE is the standard deviation of the residuals and can be changed only in relation to variances and covariances. In a model that has a goodness of fit index (GFI), these residues are very small; thus, a smaller index (closer to zero) indicates a better fit of the model. The value of this index in the model was equal to 0.051.

Adjusted Goodness of Fit Index (AGFI) and Goodness of Fit Index (GFI)

LISREL (linear structural relations) is capable of estimating structural equation models (SEMs). LISREL calculates the ratio of the sum of squares explained by the model to the total sum of squares of the estimated matrix in the community. This index is similar to the correlation coefficient in terms of usefulness. Both of these criteria vary from 0 to 1, although they may theoretically be negative. The proximity of adjusted GFI (AGFI) and GFI to number 1 is related to the good fit of the model. The GFI and AGFI values in the model were 0.94 and 0.92, respectively.

Normed Fit Index, Non-Normed Fit Index, and Comparative Fit Index

In the Normed Fit Index (NFI; also called the Bentler-Bonett Normed Fit Index), Bentler and Bountt (1980) recommended values equal to or greater than 0.9 as an incremental measure of goodness of fit for a statistical model, while some researchers use a cut-off point of 0.80. Another indicator is the Tucker-Lewis Index, also known as the Non-Normed Fit Index (NNFI). This index is similar to NFI and is an incremental fit index applied in linear mean and covariance structure modeling, especially in exploratory factor analysis. Values less than 0.9 require revision of the model. A Comparative Fit Index (CFI) greater than 0.90 is acceptable and indicates a good fit for the model. This index also tests the amount of improvement by comparing an independent model, in which there is no relationship between the variables and the proposed model.

CFI is a normed fit index ranging from 0 and 1 with higher values, showing a better fit. The values of these three indices (NFI, NNFI, CFI) in the model are 0.96, 0.98, and 0.98, respectively. All items related to each of the structures had positive and significant factor weights (minimum t-value of 4.73 was obtained), indicating that the convergent validity criterion is satisfactory. The one-dimensionality and convergent validity of the structures were also investigated using the composite reliability scale and the Average Variance Extracted (AVE) (Tong and Howley, 2009). All composite reliability values were higher than 0.6, and all AVE structures were higher than 0.50, indicating the suitability of convergent validity. The results of the confirmatory factor analysis indicated the full validity of the questionnaire used.

B: Weighting priorities and extracting the final list of priorities of relevant universities and centers

We first tried to get the initial opinions of different working groups of the Biotechnology Development Council in sections, including medicine, agriculture, environment, and industry.

In this section, we first tried to form an advisory working group at the Biotechnology Development Council level. Then, the different priorities of the staff working groups were assessed in a face-to-face meeting. By summarizing the expert opinions, an attempt was made to reach an initial draft of the priority list at the level of the Biotechnology Development Council, which is presented in Table 3. It was next tried to extract the three priorities of universities in accordance with the initial priorities of the various working groups of the Biotechnology Development Council.

		Priorities introduced by the Advisory Working Group and U	niversities
		Transgenic plants	Resistance to non-biological stresses
			Resistance to biological stresses
		Transgenic animals	
		Molecular agriculture	Antibodies and other proteins
			Oral vaccines
			Metabolite Engineering
		Seeds and seedlings using micropropagation and	
		Biofertilizers and bio-inhibitors	
		Secondary metabolites	
	ure	Biotechnology-based livestock, poultry and aquatic feed	
	ult	supplements	
	iric	Vaccines for livestock, poultry and aquatic animals	
	Ag	Diagnostic kits for important plant and animal diseases	
		Equipment in the infrastructure industry	
		Equipment in the upstream industries	
	try	Equipment in the production and intermediate industries	
0	dus	Equipment in downstream and purification industries	
tre	<u> </u>	Equipment in quality control	
gy i		Production of peptides with the role of antibiotics	
olou	a	Purification of pharmaceutical products	
schr	cin	Fermentation industries	Production of biofuels
ote	edi		Production of starters and probiotics
Bi	Е		Production of industrial enzymes

Table 3: Priorities introduced by the advisory working group and universities

		Due due tien of environmental
		Production of amino acids
		Production of organic acids
		Production of yeasts and bread yeast
		Production of antibiotics
		Production of vitamins and related compounds
		Production of biopolymers such as xanthan gum
		Production of bioemulsifiers and microalgae
	Production of anti-cancer drugs	
	Production of diagnostic biosensors	
	Production of high-yield cell lines	
	Production of recombinant monoclonal antibodies	
	inputs and biological controls	
	Biofuel	
ц	Bioremediation of oil and petrochemical industries	
nei	Air and dust	
IUO	Legal and biosafety	
nvir	Petroleum biotechnology	
e	Water and soil bioremediation	
 th	Preservation of oak forests and natural resources	

Finally, we combined the three views of the Biotechnology Development Council working group, the advisory working group, and the universities in a series of specialized meetings based on the opinions of experts in this field. As it turned out, all criteria and sub-criteria have acceptable average to experts. After the final approval of the criteria, we reached the final review of the priorities presented by the experts. Therefore, a list was provided after merging different opinions (Table 4).

code	Criteria	1	~		4	5	9	7	8	Merge comments	Normalized	code	Sub-criteria	1	2	3	4	5	6	7	8	Merge comments	Normalized
C1	Researc h output	9	7	5	7	9	5	9	9	7.500	83%	F1	Research product (cultivar, commercial hybrid, scientific article, patent, final product, patent and product)	9	7	7	7	9	5	9	9	7.750	86%
C2	Need to technol	7	9	7	9	9	7	9	9	8.250	92%	F2	The bottleneck of technology	7	7	9	9	7		9	9	8.143	90%
	ogy of											F3	Country needs	9	7	7	9	9	7	9	9	8.250	92%
	/ Immedi ate or future											F4	Emerging and innovative technology	7	5	5	7	5	5	7	5	5.750	64%
C3	Impact	7	7	5	7	9	5	9	9	7.250	81%	F5	Impact on health / treatment	9	9	7	9	9	7	7	7	8.000	89%
	on											F6	Provide food security	9	7	5	9	7	7	7	9	7.500	83%
	welfare											F7	Impact on energy	7	7	5	5	5	7	7	5	6.000	67%
	and general											F8	Impact on water and natural resources	9	9	5	7	7	7	9	9	7.750	86%
	of life											F9	Effect on reducing water consumption	9	7	9	7	9	7	9	9	8.250	92%
												F1 0	Effect on reducing input consumption	7	7		7	5	7	7	5	6.429	71%
												F1 1	Impact on employment and entrepreneurship	5	7	9	7	7	7	7	9	7.250	81%
C4	Econom ic	7		7	9	7	5	7	9	7.286	81%	F1 2	Economic added value	7	7	7	9	7		7	9	7.571	84%
	achieve ment											F1 3	Export value	5	9	7	7	9		7	7	7.286	81%
												F1 4	Effect on import ban	9	7	7	7	7		7	9	7.571	84%

Table 4: Final priorities introduced by the experts

												F1 5	Effect on farmers or beneficiaries	9	5	5	7	5	7	5	9	6.500	72%
												F1 6	Effect on reducing production costs or producing a cheaper product	9	5	5	9	7	7	7	9	7.250	81%
												F1 7	Impact on the prevention of raw material sales	7	9	9	9	7		7	5	7.571	84%
C5	The importa nce of plannin	5	9	9	7	5	7	9	3	6.750	75%	F1 8	Value / necessity for region / province	5	9	9	9	7	9	7	7	7.750	86%
C6	5 Impact	9	9	0	9	7		9	3	6.571	73%	F1	Biological recovery	7	7	7	7	5	5	5	7	6.250	69%
	environ mental											F2	Bio-recycling	7	7	5	7	7		7	7	6.714	75%
	issues											FZ 1	Revival of soil resources	9	7	5	7	7	5	7	7	6.750	75%
												F2 2	Increase water resource efficiency	9	7	9	7	7	7	7	9	7.750	86%
												FZ 3	Environmental Protection	9	9	1	9	9	7	7	5	7.000	78%
												F2 4	Reduction of pollutants	9	9	9	9	7	7	9	9	8.500	94%
												F2 5	Reduce pesticide consumption	9	9	7	9	7	7	7	9	8.000	89%
C7	Impact on culture (positiv e or negativ e)	7	5	0	7	7	5	7	0	4.750	53%	F2 6	Impact on community culture	7	5	3	7	7	7	7	0	5.375	60%
C8	Impact on	7	7	3	7	7	7	7	5	6.250	69%	F2 7	Preservation of genetic resources	9	7	3	9	7	7	7	5	6.750	75%
	resourc es and national reserve											F2 8	Production of a new product	7	5	7	5	7	5	5	3	5.500	61%
	s				T																		
C9	Technol	7	7	5	7	5	3	9	5	6.000	67%	F3	Technology rival	5	7	7	7	3		5	9	6.143	68%
	ogical attracti											0 F3	The future of technology	7	7	7	7	5		7	9	7.000	78%
	, chess											F3 2	Synergy with other technologies	5	7	9	7	5		7	3	6.143	68%
												F3	The complexity of technology	5	5	5	7	5		7	5	5.571	62%
												F3 4	The cost of acquisition	5	7	0	9	7		7	9	6.286	70%
		-	-	-	_		_	7		7.000	70%	F3 5	Market	7	7	5	9	9	_	7	9	7.571	84%
0	ce of	'	'	1	4	2	9	-71				E E3	naroware required	1/	· /	15	1/	1.0	19	10	10	0.000	0/%
	ucture								J	7.000	/0%	6			ĺ								
C1 1	infrastr ucture Existen ce of knowle	7	7	5	7	7		7	7	6.714	75%	6 F3 7	Knowledge dependence	7	7	5	7	7		7	9	7.000	78%
C1 1 C1 2	infrastr ucture Existen ce of knowle dge Coopera tion and	7	7	5	7	7		7	7	6.714	75%	6 F3 7 F3 8	Knowledge dependence Related fields of study	7 7	7	5	7	7	9	7	9	7.000	78% 64%
C1 1 C1 2	infrastr ucture Existen ce of knowle dge Coopera tion and implem entatio	7	7	5	9	7		7	7	6.714	75%	6 F3 7 F3 8 F3 9	Knowledge dependence Related fields of study Annual student recruitment capacity	7 7 5	7 7 5	5	7 7 5	7 3 3	9	7 7 7	9	7.000 5.750 4.143	78% 64%
C1 1 C1 2	infrastr ucture Existen ce of knowle dge Coopera tion and implem entatio n capacit v	7	7	5	9	7		7	7	6.714	75%	6 F3 7 F3 8 F3 9 F4 0	Knowledge dependence Related fields of study Annual student recruitment capacity Number of dissertations / dissertations extracted from it	7 7 5 5	, 7 7 5 5	5 5 3 3	7 7 5 5	7 3 3 1	9	7 7 7 5	9 1 1 1	7.000 5.750 4.143 3.571	78% 64% 46% 40%
C1 1 2	infrastr ucture Existen ce of knowle dge Coopera tion and implem entatio n capacit y	7	7	5	9	7		7	7	6.714	75%	6 F3 7 F3 8 F3 9 F4 0 F4 1	Knowledge dependence Related fields of study Annual student recruitment capacity Number of dissertations / dissertations extracted from it Share cooperation capacity (national and international)	7 7 5 5 7	7 7 5 5 7	5 5 3 3 5	7 7 5 5 7	7 3 3 1 5	9	7 7 7 5 7	9 1 1 1 7	7.000 5.750 4.143 3.571 6.500	78% 64% 46% 40% 72%
C1 1 2 C1 3	infrastr ucture Existen ce of knowle dge Coopera tion and implem entatio n capacit y Presenc e of special	7 7 7	7 7 7	5	7 9 7	7		7	7 7 9	6.714 6.429 7.286	75% 71% 81%	6 F3 7 F3 8 F3 9 F4 0 F4 0 F4 1 F4 2	Knowledge dependence Related fields of study Annual student recruitment capacity Number of dissertations / dissertations extracted from it Share cooperation capacity (national and international) University feature to select priority	7 7 5 5 7 7 7	7 7 5 5 7 7 7	5 5 3 3 5 5	7 7 5 5 7 7 7	7 3 3 1 5 5	9 7 5	7 7 7 5 7 5	9 1 1 7 9	7.000 5.750 4.143 3.571 6.500 6.250	78% 64% 46% 40% 72% 69%
C1 2 C1 3	infrastr ucture Existen ce of knowle dge Coopera tion and implem entatio n capacit y Presenc e of special abilities	7 7 7	7 7 7	5	7 9 7	7		7	7 7 9	6.714 6.429 7.286	75% 71% 81%	6 F3 7 F3 8 F3 9 F4 0 F4 1 F4 2 F4 3	Knowledge dependence Related fields of study Annual student recruitment capacity Number of dissertations / dissertations extracted from it Share cooperation capacity (national and international) University feature to select priority Duration or speed of achievement	7 7 5 7 7 7 7	7 7 5 5 7 7 7 5	5 5 3 3 5 5 7	7 7 5 5 7 7 7 7	7 3 3 1 5 5 7	9 7 5	7 7 7 5 7 5 7	9 1 1 1 7 9 9	7.000 5.750 4.143 3.571 6.500 6.250 7.000	78% 64% 46% 40% 72% 69% 78%

			-	-	_	- 1	_					54	De la constante	7	E	7	7	F	7	E	0	1 500	720/
												F4 5	preparation	1	5	'	1	5	/	2	9	6.500	72%
												F4	Existing specialized manpower	9	7	9	7	9	9	7	9	8.250	92%
												6											
												F4	Existing infrastructure	7	5	5	7	9	9	7	9	7.250	81%
	D 1 1		-	_	-	_	_	-	-		700	7		_	-	_		-	-	-	-		0.001
C1	Relation	9	7	5	9			5	3	6.333	70%	F4	Industrialization capacity	9	7	9	9	7	5	9	9	8.000	89%
4	industry											ð	(laboratory, semi-industrial and industrial)										
C1	Increas	9	5	5	7	9	7	7	9	7.250	81%	F4	and industrial)	0								0.000	0%
5	e		-									9		-									
	water-																						
	use																						
	efficien																						
	cy in																						
	and																						
	horticul																						
	ture																						
C1	Attract	9	7	5	7	7	7	7	7	7.000	78%	F5		0								0.000	0%
6	internat											0											
	ional																						
	tion																						
C1	Attract	7	9	5	5	5	7	7	9	6.750	75%	F5		0								0.000	0%
7	internat											1		-									
	ional																						
	funding	-	-	_	-	_	_	-	_		754			-									
C1	Internat	1	1	9	2	5		5	9	6./14	75%	FD		0								0.000	0%
0	importa											2											
	nce																						
C1	Create	7	7	7	5	7	-	7	9	7.000	78%	F5		0								0.000	0%
9	superio											3											
	rity																						
C2	Tourism	7	5	9	5	3	3	7	3	5.250	58%	F5		0								0.000	0%
0		-	-	-	-	_	-	-	0	5.405	F.7%	4		_								0.000	00
1	Passive	1	1	2	C	1	р	5	0	5.125	5/%	E F		0								0.000	0%
1	Detense											3											

The weights of the criteria were then extracted by the decision-making trial and evaluation laboratory (DEMATEL) technique and fuzzy network analysis (Table 5). Accordingly, the priorities were then weighed and ranked (Table 6).

Code	Criteria	Weight	Code	Sub-criteria	Weight
C1	Research output	4.60%	F1	Research product (cultivar, commercial hybrid, scientific article, patent, final product, patent and product)	4.60%
C2	Need to technology or	5.01%	F2	The bottleneck technology	2.01%
	future		F3	Country needs	1.65%
			F4	Emerging and innovative technology	1.35%
C3	Impact on welfare and	4.07%	F5	Impact on health / treatment	0.91%
	general issues of the		F6	Provide food security	0.73%
			F7	Impact on energy	0.57%
			F8	Impact on water and natural resources	0.54%
			F9	Effect on reducing water consumption	0.51%
			F10	Effect on reducing input consumption	0.57%
			F11	Impact on employment and entrepreneurship	0.24%
C4	Economic achievement	4.04%	F12	Economic added value	0.89%
			F13	Export value	0.84%
			F14	Effect on import ban	0.71%

|--|

			F15	Effect on farmers or beneficiaries	0.63%
			F16	Effect on reducing production costs or producing a cheaper product	0.53%
			F17	Impact on the prevention of raw material sales	0.44%
C5	The importance of planning	3.59%	F18	Value / necessity for region / province	3.59%
C6	Impact on	3.67%	F19	Biological recovery	0.85%
	environmental issues		F20	Bio-recycling	0.68%
			F21	Revival of soil resources	0.52%
			F22	Increase water resource efficiency	0.58%
			F23	Environmental Protection	0.42%
			F24	Reduction of pollutants	0.35%
			F25	Reduce pesticide consumption	0.27%
C7	Impact on culture	3.98%	F26	Impact on community culture	3.98%
C8	Impact on resources and national reserves	4.54%	F27	Preservation of genetic resources	2.35%
			F28	Production of a new product	2.19%
С9	Technological	5.21%	F30	Technology rival	0.78%
	attractiveness		F31	The future of technology	0.91%
			F32	Synergy with other technologies	0.82%
			F33	The complexity of technology	0.73%
			F34	The cost of acquisition	0.98%
			F35	Market	0.99%
C10	Existence of infrastructure	5.23%	F36	Hardware required	5.23%
C11	Existence of knowledge	4.73%	F37	Knowledge dependence	4.73%
C12	Cooperation and	4.62%	F38	Related fields of study	1.11%
	capacity		F39	Annual student recruitment capacity	0.88%
			F40	Number of dissertations / dissertations extracted from it	0.95%
			F41	Share cooperation capacity (national and international)	1.68%
C13	Presence of special abilities	5.54%	F42	University feature to select priority	1.11%
			F43	Duration or speed of achievement	0.98%
			F44	Logistic feature (geographical)	0.93%
			F45	Previous experiences and preparation	0.88%
			F46	Existing specialized manpower	0.83%
			F47	Existing infrastructure	0.81%

C14	Relation with industry	4.05%	F48	Industrialization capacity (laboratory, semi-industrial and industrial)	4.05%
C15	Increase water-use efficiency in crops and horticulture	4.05%	F49	Increase water-use efficiency in crops and horticulture	4.05%
C16	Attract international cooperation	4.31%	F50	Attract international cooperation	4.31%
C17	Attract international funding	5.01%	F51	Attract international funding	5.01%
C18	International importance	6.24%	F52	International importance	6.24%
C19	Create Superiority	6.60%	F53	Create Superiority	6.60%
C20	tourism	5.41%	F54	tourism	5.41%
C21	Passive Defense	5.51%	F55	Passive Defense	5.51%
		100.00%			100.00%

Table 6: A view of the final weight of priorities; environment section has not shown.

		Biotechnology priorities shrub		Weight
Industry	Equipment Working Group	Equipment in the infrastructure industry	Water purifiers	0.4866%
			Air conditioning systems and clean rooms	0.5677%
			Clean steam generation machines	0.4866%
			Tanks for preparing the culture medium, etc.,	0.4866%
			Steel plumbing	0.4866%
			Sterilization systems	0.4866%
			Transmission pumps	0.4866%
			Construction of biorefinery systems	0.5677%
		Equipment in the upstream	Types of incubators	0.2433%
		Industries	Ultracentrifuge	0.4866%
			Autoclave	0.3244%
			Chemical hoods	0.2433%
			Accurate scales	0.3244%
			Sampler	0.4055%
			Types of flasks	0.4866%
			Stirrer	0.2433%
			Falcon and microtube	0.4866%
			Invert microscope	0.3244%
			PH meter	0.5677%
			Ben Marie (water bath), magnetic stirrer, rotator, magnet	0.1622%

			Measurement systems, advanced reactors for the biofuels, biofuel consumptio	production of e production of n systems	0.2839%
		Equipment in the production and intermediate industries	Types of fixed and movable :	steel capacitors	0.2433%
			Types of bioreactors w electrical and automation ac	ith mechanical, cessories	0.2433%
			Biofuel production hybrid	Solar collectors	0.2028%
			systems	Fuel cell	0.1622%
				Fossil power plant	0.0811%
		 Fourinment in the downstream and	Types of filters		0.1622%
			Electrophoresis		0.2433%
			Filling systems		0.1622%
			Dryer		0.2433%
			Chromatographic columns		0.1622%
			Granulation production mach	nine	0.1622%
			Cooling dryer		0.1622%
			Biofilm phenomenon and bio	logical clogging	0.1622%
		Quality control equipment	Spectrophotometer		0.4055%
Industry	Biomining (microbial mining)	Biological recovery of metals from lo	w-grade mineral resources		0.4055%
	Fermentation industries	Production of fossil fuels			0.0811%
		Production of starters and probiotics	5		0.5677%
		Production of industrial enzymes			0.5677%
		Production of amino acids			0.5677%
		Production of organic acids			0.4055%
		Production of yeasts and bread doug	h		0.4055%
		Production of antibiotics			0.7299%

		Production of vitamins and related compounds			
		Production of biopolymers	Xanthan gum	0.4055%	
		Production of bioemulosiners and mi	crophilics.	0.5677%	
Agriculture	Research, development	Transgenic plants (corn, cotton,	Resistance to abiotic stresses	0.4055%	
	transgenic products	potatoes)	Resistance to biological stresses	0.4055%	
		Transgenic animals	Genetic engineering of livestock breeds with superior traits	0.5677%	
			Evaluation and selection of animal genomes	0.5677%	
		Molecular agriculture	Production of antibodies and other recombinant proteins	0.5677%	
			Oral vaccines	0.4055%	
			Genetic engineering of plant cultivars with superior traits	0.4866%	
			Metabolite Engineering	0.5677%	
			Production of double haploid lines in products	0.4055%	
			Use of molecular markers in genetic material screening	0.4866%	
			Production of seeds from the virus (such as the potato virus)	0.4866%	
			Oilseeds fortified with other bioactive compounds; Optimization of oilseeds with the ability to produce unsaturated fatty acids.	0.4866%	
		Production of microbial strains	As a biofertilizer	0.4866%	
			Biotoxins	0.4055%	
			Production of valuable by-products from waste and scrap	0.4055%	
	Seeds, seedlings, and use	Organic farming	0.4055%		
	molecular breeds	Identification and exploitation of conditions	alternative plants and harsh environmental	0.4866%	
		Plant tissue culture	Cultivation of woody plant tissue and production of disease-free seedlings	0.5677%	

			Production of potato microtubules through tissue culture	0.4866%	
			Molecular modification of economically important plants	0.5677%	
		Biodiversity conservation			
		Rescue endangered species	Sorbus forest tree	0.5677%	
		Reduction of agricultural waste	Reduction of agricultural waste		
	Biofertilizers and bio-	Microbial biofertilizer	Thiobacillus biofertilizer	0.5677%	
			Rhizobiums coexist with the plant	0.4866%	
		Pesticides	Nematol pesticide	0.4055%	
			Biomax pesticide	0.6488%	
			Bio pesticide	0.5677%	
Agriculture	Secondary metabolites	Metabolic engineering	Engineering of plant material metabolites for drug production	0.6488%	
-			Animal metabolite engineering for drug production	0.5677%	
			Isolation of beneficial genes from organisms and other living organisms	0.4866%	
			Comprehensive development of biological processes for mass production of recombinant proteins	0.5677%	
		Secondary metabolites of medicinal and aromatic plants		0.4866%	
	Livestock, poultry and aquatic feed supplements	Enzyme	Phytaze	0.5677%	
		Starter	Dairy starter	0.5677%	
		Production of quantitative and qualitative growth enhancers for plants an livestock		0.5677%	
	Vaccines for livestock, poultry and aquatic		Gumboro	0.5677%	
	animals	Bacterial	Streptococcus / Lactococcin	0.5677%	
		Parasitic and fungal	Hydatid cyst	0.5677%	
		Plant and animal serums		0.5677%	
	Kits for diagnosing	Genetic diagnosis		0.5677%	

	important plant and animal	Biological diagnosis			0.7299%	
	diseases Biochemical diagnosis			0.4055%		
Medical	Production of peptides with the role of antibiotics					0.4055%
	Production of anti-cancer	Utilization of native microorganisms in Kavir plain Production of secondary metabolites			0.5677%	
	arugs				0.5677%	
	Purification of pharmaceutical products					0.5677%
	Production of recombina	Diagnostic and research of poly and monoclonal antibodies			0.7299%	
	antibodies		Antibody	Chim	eric	0.5677%
			engineering	Hum	anized	0.5677%
	Production of diagnostic bios	ensors				0.5677%
	Production of high-yield cell	lines				0.7299%
	Diagnosis and treatment of hu	Use of medicinal plants to treat common and costly diseases Early diagnosis			0.7299%	
		Early diagnosis and treatment of cancer with nanoparticles			0.7299%	
		Treatment of infertility and recurrent abortion Diagnosis of birth defects and diseases Discover new cancer markers and treatment goals.			0.7299%	
					0.5677%	
					0.4055%	
			Cell therapy		0.5677%	
		Gene Therapy			0.5677%	
			Restorative medicine Production of diagnostic kits			0.5677%
						0.5677%
			Development of genomics methods		0.4055%	
			Engineering of pharmaceutical recombinant proteins			0.4055%
			Stem cells	and	Retina construction	0.4055%
			cissue engineerin	5	Artificial skin	0.5677%
			Building human organs in farm animals	0.4055%		

			Repair of central and peripheral nervous	0.5677%
		Production of new drugs	Expression of TPA in tobacco	0.7299%
		Drug release systems	5	0.7299%
medicine	System Biotechnology	Production of bio-products on engineered platforms		0.5677%
	Polymer field	Design, manufacture	and evaluation of bioimplants	0.5677%
		Preparation and d systems	evelopment of PLA based biodegradable	0.7299%
		Preparation and dev systems	elopment of applications for nanocomposite	0.5677%
		Preparation and dev	elopment of polymer membranes	0.5677%
	Design and production of human vaccines	Microbial vaccines	Leishmaniasis	0.7299%
			Helicobacter pylori oral vaccine	0.7299%
		Anti-cancer vaccines		0.5677%
		In vivo experiments		0.4055%
	Transgenic animals	Production of transg	enic animals using stem cell potential	0.7299%
		Cloning		0.6488%
		Reproduction of anir	nals with high genetic potential	0.5677%

Finally, the final priorities were extracted and then allocated to the universities (Table 7). The amount and manner of support of centers and universities were determined. The conditions for

monitoring universities and scientific centers were also announced.

Table 7: A view of priorities reported to universities; the priorities of all universities are not shown

Priority titles of universit	ties and research centers		
University title	Priorities	Weight	
Shiraz University Biotechnology	Plant secondary metabolites - Anti-cancer properties - Emulsifire production	100%	
Biotechnology Bosoarch Institute of	Transgenic plants, molecular farming, secondary metabolites	39 %	
Urmia University	Production of medical monoclonal antibodies	32%	
	Production of diagnostic biosensors	29 %	
Iran Polymer and Petrochemical	Development of technical knowledge and production of photocatalytic nanocomposite coatings to reduce air pollution	43%	
Research Institute	evelopment of technical knowledge and production of appropriate wound dressings for common types of wounds in Iran	32%	
	Development of technical knowledge for making artificial vessels on a semi- industrial scale	25%	
Faculty of New Medical Technologies - Shahid	Technology of semi-industrial production of recombinant drugs (streptokinase, etc.)	41%	
Beneshti	Monoclonal antibody production technology (human Scfv against PSMA)	35%	
	Cancer diagnosis with biomarker technology	24%	
Bu Ali Sina University	Bioremediation includes:		
	Identification of pollutants using biotechnology methods		
	Removing pollutants	12%	
	Diagnosis and control of plant and animal diseases	11%	
	Medicinal organisms and medicinal plants		
	Production of alternative pesticides and fertilizers and quantitative and qualitative growth enhancers for plants and livestock:		
	Diagnosis and control of animal and plant diseases		

	Design and manufacture of biological materials and vaccines	12%		
	Production of transgenic organisms	10%		
	Design and production of livestock and human vaccines	20%		
	Production of monoclonal antibodies	12%		
	In vivo tests	8%		
University of Zanjan	Preparation of nutritional and medicinal supplements from algae (Chlorella vulgaris)	60%		
	Extraction of energy from household waste using anaerobic digestion systems and conversion of biogas produced to liquefied gas	40%		
Kerman Shahid Bahonar University	Production of plants tolerant to dehydration and salinity using modern biotechnology and molecular breeding methods	47%		
	Identifying and determining the diversity of agricultural plant pathogens			
Shahroud University of Medical Sciences	Production of recombinant proteins with a therapeutic and diagnostic approach in medicine	47%		
	 Early detection and biotherapy of common cancers including: 1. Using molecular diagnostic methods using DNA, RNA and free protein in environmental fluids such as blood (Liquid biopsy) for non-invasive diagnosis of cancer or control of the treatment process. 2. Research on biosensors to detect biomarker molecules in common cancers 3. Use of immunotherapy, gene therapy and cell therapy, and targeted therapies in common cancers 4. Use of bioactive phytochemicals to reduce drug resistance and targeted therapies for cancers and metabolic diseases to reduce drug side effects 	33%		
	Reproductive biotechnology research field including clinical trials, mass production and commercialization of some required products and production of special products, especially in the field of diagnosis and treatment	20%		
North Khorasan	Production of recombinant monoclonal antibodies	40%		
University of Medical	Purification of pharmaceutical products	30%		
Sciences	Production of special / high product cell lines	30%		
Sabzevar University of	Nature-friendly waste bin production plan	35%		
Medical Sciences	Production of new combination drugs: Diclofenac-Diazepam combined suppository and difficult catheterization gel	33%		
	Medical, Safety and Hygiene Equipment: Empty containers without the use	37%		
	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box.	JZ /0		
Arak University of Medical Sciences	 of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) 	100%		
Arak University of Medical Sciences Guilan University of	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs	100% 45%		
Arak University of Medical Sciences Guilan University of Medical Sciences	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics	100% 45% 31%		
Arak University of Medical Sciences Guilan University of Medical Sciences	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia	100% 45% 31% 24%		
Arak University of Medical Sciences Guilan University of Medical Sciences Hormozgan Molecular Medical Research Contor	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug	100% 45% 31% 24% 36%		
Arak University of Medical Sciences Guilan University of Medical Sciences Hormozgan Molecular Medical Research Center	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug The effect of drugs derived from soy and cabbage in the treatment of cancer	100% 45% 31% 24% 36% 34%		
Arak University of Medical Sciences Guilan University of Medical Sciences Hormozgan Molecular Medical Research Center	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug The effect of drugs derived from soy and cabbage in the treatment of cancer Pregnancy poisoning prognosis kit, captophyt capsule	100% 45% 31% 24% 36% 34% 30%		
Arak University of Medical Sciences Guilan University of Medical Sciences Hormozgan Molecular Medical Research Center Shahid Madani	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug The effect of drugs derived from soy and cabbage in the treatment of cancer Pregnancy poisoning prognosis kit, captophyt capsule Production of transgenic crops and orchards with high quality traits	32% 100% 45% 31% 24% 36% 34% 30% 39%		
ArakUniversityofMedical SciencesGuilanUniversityofGuilanUniversityofMedicalHormozganMolecularResearchMedicalResearchCenterShahidMadaniUniversityofAzerbaijanMolecularMadani	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug The effect of drugs derived from soy and cabbage in the treatment of cancer Pregnancy poisoning prognosis kit, captophyt capsule Production of recombinant pharmaceutical proteins	32% 100% 45% 31% 24% 36% 34% 30% 39% 31%		
ArakUniversity Medical Sciencesof Medical SciencesGuilanUniversity Medical SciencesofHormozgan Medical CenterMolecular Research CenterMolecular Medical Madani Of Medical Azerbaijan	of washing and disinfecting solutions, with minor upgrades, by changing the shape of the gallon lid, these containers become Safety Box. Production of peptides with various roles: Production of recombinant proteins with different applications, including in the fields of basic sciences such as cell proliferation and differentiation, and clinical applications such as oncology, tissue repair (cardiology, diabetes, etc.) Production of anti-cancer drugs Production of peptides with the role of antibiotics Molecular diagnostic kits for important human diseases, diagnosis and gene therapy of thalassemia Marine herbal capsules for infertility, oral jellies for the treatment of male infertility, mogza drug The effect of drugs derived from soy and cabbage in the treatment of cancer Pregnancy poisoning prognosis kit, captophyt capsule Production of recombinant pharmaceutical proteins Enzyme production	32% 100% 45% 31% 24% 36% 34% 30% 39% 31% 30%		

Medical Sciences	Production of antibacterial peptide			
	Production of Xolair in the CHO cell line	12%		
	Production of industrial enzymes	9 %		
	In vitro production of recombinant human chorionic gonadotropin (hCG) and luteinizing hormone (LH) (Recombinant hCG & LH)			
	Fabrication of hydrogel-nanocomposite scaffolds by ECM modeling to differentiate bone marrow mesenchymal cells into chondrocytes (in the field of tissue engineering and cell therapy)	5%		
	Evaluation of the effect of liposomal nanosystems on alpha-synuclein protein fibrillation and cytotoxicity on neurons			
Advanced postgraduate and industrial education in Kerman	 Optimization of oilseeds with the ability to produce unsaturated fatty acids with several double bonds and other nutritionally valuable compounds Molecular race Molecular agriculture Plants 	35%		
	 Production of anti-cancer judges Purification of pharmaceutical products Production of special cell lines for the product Production of peptides with the role of antibiotics 	33%		
	Production of industrial enzymes - production of starters and Pro Unique	32%		
Noshirvani University	Production of product-based biofuels	40%		
of Babol	Production of biofuels			
	Production of fuel and energy to meet the small needs of the region	23%		

DISCUSSION

Today, many quantitative and qualitative factors (such as quality, price, flexibility, and delivery performance) must be considered for making a decision. For this purpose, speech variables can be used to determine rates and weights, and they can be expressed as triangular or trapezoidal fuzzy numbers. Therefore, the purpose of this paper was to develop the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method in decision-making with fuzzy data, where the decision-making team acquires the ability to select the appropriate option in an environment of vague criteria.

Based on the concept of the TOPSIS technique in MCDM, the coefficient index is defined by calculating the distance from the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS) through the simultaneous fuzzy number ranking approach for each option to rank all options. Finally, a numerical example is given to further illustrate the proposed method. A study indicated that the use of fuzzy set theory in the project location allowed the decision-maker to use qualitative and uncertain information. Accordingly, the site selection of projects has been considered by MCDM using fuzzy logic in the new research. In the mentioned paper, with a new approach, the site selection of artificial feeding sites has been done using fuzzy logic by combining AHP and FTOPSIS methods. The decision-maker opinion is applied to classes of criteria in the form of triangular fuzzy numbers in weighting using fuzzy logic. In today's competitive environment, the managers of car companies try to turn the market into a competitive organization by creating the ability to deliver quality products on time according to the needs of customers. In this regard, product maintenance and repair play a key role in reducing costs, minimizing equipment downtime, improving quality, increasing productivity, ensuring equipment reliability, and achieving quantitative and qualitative organizational goals. Choosing the right maintenance strategy in the automotive industry is a kind of MCDM problem to achieve these goals.

A study applied a <u>hybrid</u> DEMATEL and <u>ANP</u> approach for <u>suitable</u> maintenance approach selection, where the Delphi technique was also used to determine effective factors on the suitable maintenance approach, and DEMATEL was used to determine the direction of the relationships between the criteria in two Iran KHODRO Diesel and SAIPA Diesel companies [26].

Another study aimed to select a marketing strategy using a combination of ANP and TOPSIS decision-making methods by a five-step algorithm in premium and regular hotels in Khuzestan, Tehran, and Isfahan provinces, Iran. They have identified the weights associated with several indicators using the network analysis process technique and then prioritized the marketing strategy using the TOPSIS approach [27].

The fuzzy DEMATEL method has previously been applied to develop supplier selection criteria to improve the performance and provide a novel approach of decision-making information in supply chain management of electronic industry suppliers. The aforementioned study constructed the strategy map among these influential criteria using DEMATEL [28]. Experts believe that supplier selection is one of the most important functions of the purchasing sector for saving material costs and increasing competitive advantage [29].

DEMATEL has been applied to find factors influencing the selection of supply chain management suppliers. The DEMATEL method evaluates supplier performance to find key metrics for performance improvement and provides a new approach to decision-making information in supplier selection. The DEMATEL method has the benefit of being able to demonstrate the association of factors influencing other factors in supplier selection (direct and indirect influence among criteria), resulting in computation of the causal association and strength among supplier selection factors [28].

The study by Chen and Chen (2010) described an innovation support system (ISS) for Taiwanese higher education institutes to assess their innovation performance. This paper addressed an MCDM approach that was capable of showing the dependent relationships between each of the measurement criteria. Thus, DEMATEL, FANP, and TOPSIS were applied to develop an ISS that considers the interdependence and relative weight of each measurement criterion, where the DEMATEL method aimed at constructing a relation structure by measurement criteria for innovation evaluation. FANP was able to address the interdependence and relative weights of each criterion. TOPSIS was also used to rank optimal alternatives for innovation configurations [30].

The use of hybrid MCDM approaches for engineering and other fields is being more widely applied because of their ability to help decision-makers to handle miscellaneous information [31].

As known, there is more than one decision criterion for most problems. A fuzzy hybrid MCDM approach composed of combining three different techniques (i.e., FANP, FTOPSIS, and ELimination Et Choix Traduisant la REalite approaches) has been adopted for more accurate personnel selection, providing the use of both qualitative and quantitative factors. Proposing an MCDM approach for real personnel selection is described as the unique characteristic of the mentioned study [32].

It has been stated that determining the right suppliers (suitable and green suppliers) in the supply chain has become a key strategic consideration in recent years. The nature of supplier selection is a complex multi-criteria problem involving quantitative and qualitative factors that may be conflicting or uncertain. A study provided a novel hybrid MCDM approach to propose an evaluation framework for green suppliers and the requirement of improving green supply chain management initiatives in a specific company by an MCDM model consisting of DEMATEL, ANP, and TOPSI [33].

As the problem complexity of MCDM was raised in the distribution of COVID-19 vaccines, solid and robust MCDM methods (including fuzzy-weighted zero-inconsistency [FWZIC] and fuzzy decision by opinion score method [FDOSM]) have been applied based on the T-SFSs environment to solve different MCDM challenges through two phases including decision matrix adoption in the COVID-19 vaccine distribution and development, where an inductive methodology based on the detailed weighting (weighting the distribution criteria) and prioritization (prioritizing the vaccine recipients) were proposed [34].

An interval arithmetic-based fuzzy MCDM approach has been developed for technology transfer strategy selection in biotechnology, where the ratings of various strategies, various criteria, and the weights of various criteria can be evaluated in fuzzy numbers and/or linguistic terms, by which membership functions were provided for the final fuzzy evaluation values of the technology transfer strategies [35].

In the biological field, the division plan, macro-organization, and determination of labor priorities of the relevant units have not been done so far. Of course, it may have been done at the level of university units, but so far, it has not been done at the level of the Biotechnology Development Council in Iran.

CONCLUSION

This research was conducted to help the integrated management of biosciences and technology development, as

well as systematic and intelligent support of research centers and universities, where the results can be helpful to increase production capacities and activities in this field, as well as to achieve objectives stated in specialized biotechnology documents.

As a matter of fact, the aim of this project was to guide and support the production of new and effective products in agriculture, medicine, nutrition, environment, alternative fuel sources, etc., which will lead to economic prosperity and the production of wealth, resulting in a resilient economy. The project can not only contribute to the health care services and products, safe environment, entrepreneurship and employment, setting point, and regional and national priorities, but also can contribute to the national consensus on biotechnology research priorities by their identification in the current situation of the country.

Finally, priority areas in terms of universities and centers were extracted, including four key areas, 274 key sub-areas, 21 criteria, and 48 sub-criteria. The ranking of projects and priorities has been done using MCDM techniques, scientometric map-based verification, preparation of a tree of priorities and needs of universities and research centers. The output of this study will facilitate the planning and monitoring of universities and bioresearch centers, so that the following achievements will be achieved: (1) possibility of defining joint projects between universities with complementary missions, (2) differentiation of universities and research centers and their specialization, (3) determination of key technologies, (4) fields and sub-fields of the priority of bioscience and biotechnology, (5) determination of necessary infrastructures and resources for development or acquisition of key sub-fields, (6) strengthening the country's scientific and technological capacity in each axis, (7) coordinating and increasing productive capacities, and (8) organizing and monitoring the country's allocated budgets in the field of biotechnology.

Declarations Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

Authors designed the study, drafted the manuscript, and contributed to the discussion, collected and analyzed the data, reviewed the manuscript. All authors approved the submitted version.

Funding

Not applicable.

ACKNOWLEDGMENT

This research has been done by support of Vice-Presidency for Science and Technology of Islamic Republic of Iran.

REFERENCES

- Chen, D. H., & Dahlman, C. J. (2005). The knowledge economy, the KAM methodology and World Bank operations. World Bank Institute Working Paper, 37256.
- Ivanova, I. A., & Leydesdorff, L. (2014). Rotational symmetry and the transformation of innovation systems in a Triple Helix of university-industrygovernment relations. Technological forecasting and social change, 86, 143-156.
- Lyasnikov, N., Dudin, M., Sekerin, V., Veselovsky, M., & Aleksakhina, V. (2014). The national innovation system: the conditions of its making and factors in its development. Life Science Journal, 11(6), 535-538.
- Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2006). Analysing the dynamics and functionality of sectoral innovation systems. In A Manual, in 10 Year Anniversary DRUID Summer Conference, Copenhagen (pp. 27-29).
- Godin, B. (2002). The rise of innovation surveys: Measuring a fuzzy concept. Working Paper for the Canadian Science and Innovation Indicators Consortium, Project on the History and Sociology of S&T Statistics, Montreal.
- Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix---University-Industry-Government Relations: A Laboratory for Knowledge-Based Economic Development. EASST Review 14, 14-19.
- Ranga, M., Hoareau, C., Durazzi, N., Etzkowitz, H., Marcucci, P., & Usher, A. (2013). Study on university-business cooperation in the US. London: LSE Enterprise.
- Zhang, J., & Liang, X. J. (2012). Promoting green ICT in China: A framework based on innovation system approaches. Telecommunications Policy, 36(10-11), 997-1013.
- Etzkowitz, H. (2003). Innovation in innovation: The triple helix of universityindustry-government relations. Social science information, 42(3), 293-337
- Abdulkareem KH, Arbaiy N, Zaidan AA. (2020) A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques, 19(03): 909-957
- Albahri O, Zaidan AA, Bahaa B, Albahri AS. (2021) New mHealth hospital selection framework supporting decentralised telemedicine architecture for outpatient cardiovascular disease-based integrated techniques: Haversine-GPS and AHP-VIKOR. J Ambient Intell Humaniz Comput, 13(1):121
- Albahri O, A. Zaidan, B. Zaidan, M. Hashim, A. Albahri, M. Alsalem. (2018) Realtime remote health-monitoring Systems in a Medical Centre: a review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects J Med Syst, 42 (9): 164
- Zaidan A., B. Zaidan, M. Alsalem, F. Momani, O. Zughoul. (2020) Novel multiperspective hiring framework for the selection of software programmer applicants based on AHP and group TOPSIS techniques. Int J Inf Technol Decis Mak, 18 (4):775-847
- Guo, S.; Zhang, W.; Gao, X. (2020) Business risk evaluation of electricity retail company in China using a hybrid MCDM method. Sustainability, 12:2040.
- Chen, C.H (2019). A new multi-criteria assessment model combining GRA techniques with intuitionistic fuzzy entropy-based TOPSIS method for sustainable building materials supplier selection. Sustainability 11, 2265

- Ibrahim N., Hammed H, Zaidan AA, (2019). Multi-criteria evaluation and benchmarking for young learners' English language mobile applications in terms of LSRW skills IEEE Access, 7: 146620-146651
- Jumaah F., A. Zadain, B. Zaidan, A. Hamzah, R. Bahbibi. (2018) Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement118:83-95
- Salih M.M., B. Zaidan, A. Zaidan, M.A. (2019) Ahmed Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017 Comput Oper Res, 104:207-227
- Kabir G., R. Sadiq, S. (2014)Tesfamariam A review of multi-criteria decisionmaking methods for infrastructure management. Struct. Infrastruct. Eng., 10 (9) :1176-1210
- Gungor, Z., Serhadliog`lu, G., & Kesen, S. E. (2009). A fuzzy AHP approach to personnel selection. Applied Soft Computing, 9, 641-646.
- Wu, D. (2009). Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert Systems with Applications, 36, 9105-9112.
- Sevkli, M., Koh, S. C. L., Zaim, S., Demirbag, M., & Tatoglu, E. (2007). An application of data envelopment analytic hierarchy process for supplier selection: A case study of BEKO in Turkey. International Journal of Production Research, 45,1973-2003.
- Lin, R.-H. (2009). An integrated FANP-MOLP for supplier evaluation and order allocation. Applied Mathematical Modelling, 33, 2730-2736
- Lee, A. H. I., Kang, Y., Hsu, H. C-F., & Hung, H.-C. (2009). A green supplier selection model for high-tech industry. Expert Systems with Applications, 36, 7917-7927
- Tsai, W.-H., & Hung, S.-J. (2009). A fuzzy goal programming approach for green supply chain optimization under activity-based costing and performance evaluation with a value-chain structure. International Journal of Production Research, 47(18), 4991-5017.
- Aghaee, M., Fazli, S (2012). Applying a Hybrid DEMATEL and ANP Approach for Suitable Maintenance Approach Selection (Case Study: Work Vehicle Industry). Journal of Industrial Management Perspective,; 2(2): 89-107.
- Hajipor, B., Momeni, M., Ghasemi, Z., (2012). Choosing a marketing strategy using a combination of ANP and TOPSIS decision methods. Quarterly Journal of Quantitative Studies in Management. 8 (1); 92-101 [In Persian].
- Chang B, Chang CW, Wu CH. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert systems with Applications. 38(3):1850-8.
- Saen, R. F. (2007). A new mathematical approach for suppliers selection: Accounting for non-homogeneity is important. Applied Mathematics and Computation, 185(1), 84-95.
- Chen JK, Chen IS. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications. 37(3):1981-90.
- Kazimieras Zavadskas E, Antucheviciene J, Adeli H, Turskis Z. (2016). Hybrid multiple criteria decision making methods: A review of applications in engineering. Scientia Iranica. 23(1):1-20.
- Kabak M, Burmaoğlu S, Kazançoğlu Y. (2012). A fuzzy hybrid MCDM approach for professional selection. Expert Systems with Applications. 39(3):3516-25
- Büyüközkan G, Çifçi G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications. 39(3):3000-11.
- Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS(2021). Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. J Infect Public Health. 14(10):1513-1559.
- Tsao CT. (2004). An interval arithmetic based fuzzy MCDM approach for technology transfer strategy selection in biotechnology. Journal of Information and Optimization Sciences. 25(3):507-20.